Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate the integral.

int(x^(2)+5)^(2)dx
Answer:

Evaluate the integral.\newline(x2+5)2 dx \int\left(x^{2}+5\right)^{2} \mathrm{~d} x \newlineAnswer:

Full solution

Q. Evaluate the integral.\newline(x2+5)2 dx \int\left(x^{2}+5\right)^{2} \mathrm{~d} x \newlineAnswer:
  1. Expand the integrand: We need to expand the integrand (x2+5)2(x^2 + 5)^2 before integrating.(x2+5)2=(x2+5)(x2+5)=x4+10x2+25(x^2 + 5)^2 = (x^2 + 5)(x^2 + 5) = x^4 + 10x^2 + 25
  2. Integrate the expanded form: Now we integrate the expanded form term by term.\newline(x4+10x2+25)dx=x4dx+10x2dx+25dx\int(x^4 + 10x^2 + 25)\,dx = \int x^4\,dx + \int 10x^2\,dx + \int 25\,dx
  3. Integrate each term separately: Integrate each term separately using the power rule for integration, which states that xndx=x(n+1)(n+1)+C\int x^n \, dx = \frac{x^{(n+1)}}{(n+1)} + C for any real number n1n \neq -1.x4dx=x(4+1)(4+1)=x55\int x^4\,dx = \frac{x^{(4+1)}}{(4+1)} = \frac{x^5}{5}10x2dx=10×x(2+1)(2+1)=10x33\int 10x^2\,dx = 10 \times \frac{x^{(2+1)}}{(2+1)} = \frac{10x^3}{3}25dx=25x\int 25\,dx = 25x
  4. Combine the integration results: Combine the results of the integrations to get the final indefinite integral.\newline(x4+10x2+25)dx=x55+10x33+25x+C\int(x^4 + 10x^2 + 25)\,dx = \frac{x^5}{5} + \frac{10x^3}{3} + 25x + C

More problems from Evaluate definite integrals using the chain rule