Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate the integral 
int(x-2)/(3x+6)dx.
Choose 1 answer:
(A) 
(1)/(2)x-(4ln |x+2|)/(3)+C
(B) 
(1)/(2)x+(4ln |x+2|)/(3)+C
(C) 
(1)/(3)x-(4ln |x+2|)/(3)+C
(D) 
(1)/(3)x+(4ln |x+2|)/(3)+C

Evaluate the integral x23x+6dx \int \frac{x-2}{3 x+6} d x .\newlineChoose 11 answer:\newline(A) 12x4lnx+23+C \frac{1}{2} x-\frac{4 \ln |x+2|}{3}+C \newline(B) 12x+4lnx+23+C \frac{1}{2} x+\frac{4 \ln |x+2|}{3}+C \newline(C) 13x4lnx+23+C \frac{1}{3} x-\frac{4 \ln |x+2|}{3}+C \newline(D) 13x+4lnx+23+C \frac{1}{3} x+\frac{4 \ln |x+2|}{3}+C

Full solution

Q. Evaluate the integral x23x+6dx \int \frac{x-2}{3 x+6} d x .\newlineChoose 11 answer:\newline(A) 12x4lnx+23+C \frac{1}{2} x-\frac{4 \ln |x+2|}{3}+C \newline(B) 12x+4lnx+23+C \frac{1}{2} x+\frac{4 \ln |x+2|}{3}+C \newline(C) 13x4lnx+23+C \frac{1}{3} x-\frac{4 \ln |x+2|}{3}+C \newline(D) 13x+4lnx+23+C \frac{1}{3} x+\frac{4 \ln |x+2|}{3}+C
  1. Rewrite Integral: Rewrite the integral by factoring out the constant from the denominator. \int\frac{x\(-2\)}{\(3\)x+\(6\)}\,dx = \int\frac{x\(-2\)}{\(3\)(x+\(2\))}\,dx
  2. Split into Two: Split the integral into two separate integrals. \(\int\frac{x-2}{3(x+2)}dx = \frac{1}{3}\int\frac{x}{x+2}dx - \frac{1}{3}\int\frac{2}{x+2}dx
  3. Simplify First Integral: Simplify the first integral by dividing xx by (x+2)(x+2).13x(x+2)dx=13(12(x+2))dx\frac{1}{3}\int\frac{x}{(x+2)}dx = \frac{1}{3}\int(1 - \frac{2}{(x+2)})dx
  4. Separate Integrals: Separate the integrals.\newline(\frac{\(1\)}{\(3\)})\int(\(1 - \frac{22}{x+22})dx = (\frac{11}{33})\int(11)dx - (\frac{22}{33})\int(\frac{11}{x+22})dx
  5. Integrate Both Terms: Integrate both terms.\newline(\frac{\(1\)}{\(3\)})\int(\(1)dx - (\frac{22}{33})\int(\frac{11}{(x+22)})dx = (\frac{11}{33})x - (\frac{22}{33})\ln|x+22| + C
  6. Multiply by Constants: Multiply through by the constants.\newline(\frac{\(1\)}{\(3\)})x - (\frac{\(2\)}{\(3\)})\ln|x+\(2| + C = (\frac{11}{33})x - (\frac{44}{33})\ln|x+22| + C
  7. Match with Options: Match the result with the given options.\newlineThe correct answer is (D) (13)x+(43)lnx+2+C(\frac{1}{3})x + (\frac{4}{3})\ln|x+2| + C

More problems from Evaluate definite integrals using the chain rule