Q. Evaluate the integral ∫3x+6x−2dx.Choose 1 answer:(A) 21x−34ln∣x+2∣+C(B) 21x+34ln∣x+2∣+C(C) 31x−34ln∣x+2∣+C(D) 31x+34ln∣x+2∣+C
Rewrite Integral: Rewrite the integral by factoring out the constant from the denominator. \int\frac{x\(-2\)}{\(3\)x+\(6\)}\,dx = \int\frac{x\(-2\)}{\(3\)(x+\(2\))}\,dx
Split into Two: Split the integral into two separate integrals. \(\int\frac{x-2}{3(x+2)}dx = \frac{1}{3}\int\frac{x}{x+2}dx - \frac{1}{3}\int\frac{2}{x+2}dx
Simplify First Integral: Simplify the first integral by dividing x by (x+2).31∫(x+2)xdx=31∫(1−(x+2)2)dx
Separate Integrals: Separate the integrals.(\frac{\(1\)}{\(3\)})\int(\(1 - \frac{2}{x+2})dx = (\frac{1}{3})\int(1)dx - (\frac{2}{3})\int(\frac{1}{x+2})dx
Integrate Both Terms: Integrate both terms.(\frac{\(1\)}{\(3\)})\int(\(1)dx - (\frac{2}{3})\int(\frac{1}{(x+2)})dx = (\frac{1}{3})x - (\frac{2}{3})\ln|x+2| + C
Multiply by Constants: Multiply through by the constants.(\frac{\(1\)}{\(3\)})x - (\frac{\(2\)}{\(3\)})\ln|x+\(2| + C = (\frac{1}{3})x - (\frac{4}{3})\ln|x+2| + C
Match with Options: Match the result with the given options.The correct answer is (D) (31)x+(34)ln∣x+2∣+C
More problems from Evaluate definite integrals using the chain rule