Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate the integral 
int(x-1)/(2x+4)dx.
Choose 1 answer:
(A) 
(1)/(2)x-(1)/(2)ln |x+2|+C
(B) 
(1)/(2)x-ln |x+2|+C
(C) 
(1)/(2)x-(3)/(2)ln |x+2|+C
(D) 
(1)/(2)x-2ln |x+2|+C

Evaluate the integral x12x+4dx \int \frac{x-1}{2 x+4} d x .\newlineChoose 11 answer:\newline(A) 12x12lnx+2+C \frac{1}{2} x-\frac{1}{2} \ln |x+2|+C \newline(B) 12xlnx+2+C \frac{1}{2} x-\ln |x+2|+C \newline(C) 12x32lnx+2+C \frac{1}{2} x-\frac{3}{2} \ln |x+2|+C \newline(D) 12x2lnx+2+C \frac{1}{2} x-2 \ln |x+2|+C

Full solution

Q. Evaluate the integral x12x+4dx \int \frac{x-1}{2 x+4} d x .\newlineChoose 11 answer:\newline(A) 12x12lnx+2+C \frac{1}{2} x-\frac{1}{2} \ln |x+2|+C \newline(B) 12xlnx+2+C \frac{1}{2} x-\ln |x+2|+C \newline(C) 12x32lnx+2+C \frac{1}{2} x-\frac{3}{2} \ln |x+2|+C \newline(D) 12x2lnx+2+C \frac{1}{2} x-2 \ln |x+2|+C
  1. Split Integral: Let's split the integral into two parts by dividing each term in the numerator by the denominator.\newlinex12x+4dx=1212x+4dx \int \frac{x-1}{2x+4}dx = \int \frac{1}{2} - \frac{1}{2x+4}dx
  2. Integrate Parts: Now we integrate each part separately.\newline12dx=12x \int \frac{1}{2}dx = \frac{1}{2}x \newlineand\newline12x+4dx=121x+2dx \int \frac{1}{2x+4}dx = \frac{1}{2} \int \frac{1}{x+2}dx
  3. Use Natural Logarithm: To integrate 1x+2\frac{1}{x+2}, we use the natural logarithm.\newline121x+2dx=12lnx+2+C \frac{1}{2} \int \frac{1}{x+2}dx = \frac{1}{2} \ln|x+2| + C
  4. Combine Parts: Combine the two parts to get the final answer.\newline12x12lnx+2+C \frac{1}{2}x - \frac{1}{2} \ln|x+2| + C
  5. Match Final Answer: Match the final answer with the given options.\newlineThe correct answer is (A) 12x12lnx+2+C\frac{1}{2}x - \frac{1}{2}\ln|x+2| + C.

More problems from Evaluate definite integrals using the chain rule