Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate the integral 
int(3x+4)/(x+3)dx.
Choose 1 answer:
(A) 
=9x-4ln |x+3|+C
(B) 
=3x-5ln |x+3|+C
(C) 
=3x+5ln |x+3|+C
(D) 
=9x-5ln |x+3|+C

Evaluate the integral 3x+4x+3dx \int \frac{3 x+4}{x+3} d x .\newlineChoose 11 answer:\newline(A) =9x4lnx+3+C =9 x-4 \ln |x+3|+C \newline(B) =3x5lnx+3+C =3 x-5 \ln |x+3|+C \newline(C) =3x+5lnx+3+C =3 x+5 \ln |x+3|+C \newline(D) =9x5lnx+3+C =9 x-5 \ln |x+3|+C

Full solution

Q. Evaluate the integral 3x+4x+3dx \int \frac{3 x+4}{x+3} d x .\newlineChoose 11 answer:\newline(A) =9x4lnx+3+C =9 x-4 \ln |x+3|+C \newline(B) =3x5lnx+3+C =3 x-5 \ln |x+3|+C \newline(C) =3x+5lnx+3+C =3 x+5 \ln |x+3|+C \newline(D) =9x5lnx+3+C =9 x-5 \ln |x+3|+C
  1. Simplify the integrand: First, let's try to simplify the integral by dividing the polynomial. We can rewrite the integrand as 3+(1x+3)3 + \left(\frac{1}{x+3}\right).
  2. Integrate each term: Now, we integrate each term separately. The integral of 33 with respect to xx is 3x3x, and the integral of 1x+3\frac{1}{x+3} is lnx+3\ln|x+3|.
  3. Finalize the integral: So, the integral becomes 3x+lnx+3+C3x + \ln|x+3| + C, where CC is the constant of integration.

More problems from Evaluate definite integrals using the chain rule