Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate the integral.

int(3x^(2)-5)^(2)dx
Answer:

Evaluate the integral.\newline(3x25)2 dx \int\left(3 x^{2}-5\right)^{2} \mathrm{~d} x \newlineAnswer:

Full solution

Q. Evaluate the integral.\newline(3x25)2 dx \int\left(3 x^{2}-5\right)^{2} \mathrm{~d} x \newlineAnswer:
  1. Expand the integrand: Expand the integrand (3x25)2(3x^2 - 5)^2. To integrate the function, we first need to expand the square of the binomial to simplify the integrand. (3x25)2=(3x25)(3x25)=9x430x2+25(3x^2 - 5)^2 = (3x^2 - 5)(3x^2 - 5) = 9x^4 - 30x^2 + 25
  2. Set up the integral: Set up the integral with the expanded form.\newlineNow we can write the integral as:\newline(9x430x2+25)dx\int(9x^4 - 30x^2 + 25)\,dx
  3. Integrate each term separately: Integrate each term separately.\newlineThe integral of a sum is the sum of the integrals, so we can integrate each term separately.\newline9x4dx30x2dx+25dx\int 9x^4 \, dx - \int 30x^2 \, dx + \int 25 \, dx
  4. Apply the power rule: Apply the power rule for integration to each term.\newlineThe power rule states that xndx=x(n+1)n+1+C\int x^n \, dx = \frac{x^{(n+1)}}{n+1} + C, where CC is the constant of integration.\newline9x4dx=95x5\int 9x^4\,dx = \frac{9}{5}x^5\newline30x2dx=303x3=10x3\int 30x^2\,dx = \frac{30}{3}x^3 = 10x^3\newline25dx=25x\int 25\,dx = 25x
  5. Combine the integration results: Combine the results of the integrations.\newlineNow we combine the results from the previous step to get the antiderivative of the original function.\newline95x510x3+25x+C\frac{9}{5}x^5 - 10x^3 + 25x + C
  6. Check for errors: Check for any mathematical errors. Review the steps to ensure that there are no mathematical errors in the calculations. No errors found.

More problems from Evaluate definite integrals using the chain rule