Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate the integral.

int(3x^(2)+2)^(2)dx
Answer:

Evaluate the integral.\newline(3x2+2)2 dx \int\left(3 x^{2}+2\right)^{2} \mathrm{~d} x \newlineAnswer:

Full solution

Q. Evaluate the integral.\newline(3x2+2)2 dx \int\left(3 x^{2}+2\right)^{2} \mathrm{~d} x \newlineAnswer:
  1. Expand binomial: Expand the integrand (3x2+2)2(3x^2 + 2)^2. To integrate the function, we first need to expand the square of the binomial to simplify the integrand. (3x2+2)2=(3x2+2)(3x2+2)=9x4+12x2+4(3x^2 + 2)^2 = (3x^2 + 2)(3x^2 + 2) = 9x^4 + 12x^2 + 4
  2. Set up integral: Set up the integral with the expanded integrand.\newlineNow that we have expanded the integrand, we can write the integral as:\newline(9x4+12x2+4)dx\int(9x^4 + 12x^2 + 4)\,dx
  3. Integrate each term: Integrate each term separately.\newlineWe will integrate each term of the polynomial separately using the power rule for integration, which states that xndx=x(n+1)n+1+C\int x^n \, dx = \frac{x^{(n+1)}}{n+1} + C, where CC is the constant of integration.\newline9x4dx=95x5\int 9x^4 \, dx = \frac{9}{5}x^5\newline12x2dx=123x3=4x3\int 12x^2 \, dx = \frac{12}{3}x^3 = 4x^3\newline4dx=4x\int 4 \, dx = 4x
  4. Combine integration results: Combine the results of the integrations.\newlineNow we combine the results of the individual integrations to get the final result of the original integral.\newline(9x4+12x2+4)dx=95x5+4x3+4x+C\int(9x^4 + 12x^2 + 4)\,dx = \frac{9}{5}x^5 + 4x^3 + 4x + C

More problems from Evaluate definite integrals using the chain rule