Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate the integral 
int(2x+1)/(x+2)dx.
Choose 1 answer:
(A) 
2x-3ln |x+2|+C
(B) 
ln |x+2|+C
(C) 
x+ln |2x+1|+C
(D) 
2x-ln |x+2|+C

Evaluate the integral 2x+1x+2dx \int \frac{2 x+1}{x+2} d x .\newlineChoose 11 answer:\newline(A) 2x3lnx+2+C 2 x-3 \ln |x+2|+C \newline(B) lnx+2+C \ln |x+2|+C \newline(C) x+ln2x+1+C x+\ln |2 x+1|+C \newline(D) 2xlnx+2+C 2 x-\ln |x+2|+C

Full solution

Q. Evaluate the integral 2x+1x+2dx \int \frac{2 x+1}{x+2} d x .\newlineChoose 11 answer:\newline(A) 2x3lnx+2+C 2 x-3 \ln |x+2|+C \newline(B) lnx+2+C \ln |x+2|+C \newline(C) x+ln2x+1+C x+\ln |2 x+1|+C \newline(D) 2xlnx+2+C 2 x-\ln |x+2|+C
  1. Divide and Simplify: Let's do long division first to simplify the integral.\newline(2x+1)/(x+2)(2x+1)/(x+2) can be divided to get 22 with a remainder of 3-3.\newlineSo, (2x+1)/(x+2)=23/(x+2)(2x+1)/(x+2) = 2 - 3/(x+2).
  2. Split Integral: Now we can split the integral into two parts. 2x+1x+2dx=2dx3x+2dx\int\frac{2x+1}{x+2}\,dx = \int 2 \,dx - \int \frac{3}{x+2} \,dx.
  3. Integrate Separately: Integrate each part separately.\newlineThe integral of 2dx2 \, dx is 2x2x.\newlineThe integral of 3(x+2)dx\frac{3}{(x+2)} \, dx is 3lnx+23\ln|x+2|.
  4. Combine Integrals: Combine the two integrals.\newlineSo, 2x+1x+2dx=2x3lnx+2+C\int \frac{2x+1}{x+2}\,dx = 2x - 3\ln|x+2| + C.
  5. Check Answer Choices: Check the answer choices.\newlineThe correct answer matches with (A) 2x3lnx+2+C2x - 3\ln|x+2| + C.

More problems from Evaluate definite integrals using the chain rule