Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate the integral and express your answer in simplest form.

int(3)/(1+9x^(2))dx
Answer:

Evaluate the integral and express your answer in simplest form.\newline31+9x2dx \int \frac{3}{1+9 x^{2}} d x \newlineAnswer:

Full solution

Q. Evaluate the integral and express your answer in simplest form.\newline31+9x2dx \int \frac{3}{1+9 x^{2}} d x \newlineAnswer:
  1. Given Integral: We are given the integral to evaluate:\newline31+9x2dx\int\frac{3}{1+9x^{2}}dx\newlineTo solve this integral, we can use a trigonometric substitution because the denominator has the form of 1+a2x21 + a^2x^2, which suggests using the substitution x=1atan(θ)x = \frac{1}{a}\tan(\theta).\newlineLet's choose x=13tan(θ)x = \frac{1}{3}\tan(\theta), so that 9x29x^2 becomes tan2(θ)\tan^2(\theta).
  2. Trigonometric Substitution: First, we need to find dxdx in terms of dθd\theta. Differentiating x=13tan(θ)x = \frac{1}{3}\tan(\theta) with respect to θ\theta gives us:\newlinedxdθ=13sec2(θ)\frac{dx}{d\theta} = \frac{1}{3}\sec^2(\theta)\newlinedx=13sec2(θ)dθdx = \frac{1}{3}\sec^2(\theta)d\theta
  3. Finding dxdx in terms of dθ:d\theta: Now we substitute xx with (1/3)tan(θ)(1/3)\tan(\theta) and dxdx with (1/3)sec2(θ)dθ(1/3)\sec^2(\theta)d\theta in the integral:\newline31+9x2dx=31+tan2(θ)13sec2(θ)dθ\int\frac{3}{1+9x^{2}}dx = \int\frac{3}{1+\tan^2(\theta)} \cdot \frac{1}{3}\sec^2(\theta)d\theta\newlineSimplify the integral using the trigonometric identity 1+tan2(θ)=sec2(θ):1 + \tan^2(\theta) = \sec^2(\theta):\newline3sec2(θ)13sec2(θ)dθ\int\frac{3}{\sec^2(\theta)} \cdot \frac{1}{3}\sec^2(\theta)d\theta
  4. Substituting xx and dxdx in the integral: The sec2(θ)\sec^2(\theta) terms cancel out, leaving us with: dθ\int d\theta This integral is straightforward to evaluate: dθ=θ+C\int d\theta = \theta + C
  5. Simplifying the integral: Now we need to express θ\theta back in terms of xx. From our substitution x=13tan(θ)x = \frac{1}{3}\tan(\theta), we can write: θ=arctan(3x)\theta = \arctan(3x) So the integral becomes: θ+C=arctan(3x)+C\theta + C = \arctan(3x) + C
  6. Evaluating the integral: We have now found the antiderivative of the given function. The final answer in simplest form is: arctan(3x)+C\arctan(3x) + C

More problems from Evaluate definite integrals using the power rule