Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate the integral and express your answer in simplest form.

int(4)/(16+25x^(2))dx
Answer:

Evaluate the integral and express your answer in simplest form.\newline416+25x2dx \int \frac{4}{16+25 x^{2}} d x \newlineAnswer:

Full solution

Q. Evaluate the integral and express your answer in simplest form.\newline416+25x2dx \int \frac{4}{16+25 x^{2}} d x \newlineAnswer:
  1. Recognize Trig Substitution: We are given the integral to evaluate: \newline416+25x2dx\int \frac{4}{16+25x^{2}}dx\newlineTo simplify the integral, we can recognize that the denominator has the form of a2+u2a^2 + u^2, where aa is a constant and uu is a function of xx. This suggests that we can use a trigonometric substitution, specifically the tangent substitution, where x=abtan(θ)x = \frac{a}{b}\tan(\theta) and dx=absec2(θ)dθdx = \frac{a}{b}\sec^2(\theta)d\theta. In our case, a2=16a^2 = 16 and b2=25b^2 = 25, so a=4a = 4 and a2+u2a^2 + u^200. Therefore, we can let a2+u2a^2 + u^211, which gives us a2+u2a^2 + u^222.
  2. Substitute xx and dxdx: Now we substitute xx and dxdx in the integral:\newline416+25x2dx=416+25(45)2tan2(θ)(45)sec2(θ)dθ\int\frac{4}{16+25x^{2}}dx = \int\frac{4}{16+25\left(\frac{4}{5}\right)^2\tan^2(\theta)} \left(\frac{4}{5}\right)\sec^2(\theta)d\theta\newlineSimplify the expression inside the integral:\newline416+25(1625)tan2(θ)(45)sec2(θ)dθ=416+16tan2(θ)(45)sec2(θ)dθ\int\frac{4}{16+25\left(\frac{16}{25}\right)\tan^2(\theta)} \left(\frac{4}{5}\right)\sec^2(\theta)d\theta = \int\frac{4}{16+16\tan^2(\theta)} \left(\frac{4}{5}\right)\sec^2(\theta)d\theta\newlineThis simplifies to:\newline416(1+tan2(θ))(45)sec2(θ)dθ\int\frac{4}{16\left(1+\tan^2(\theta)\right)} \left(\frac{4}{5}\right)\sec^2(\theta)d\theta\newlineSince 1+tan2(θ)=sec2(θ)1 + \tan^2(\theta) = \sec^2(\theta), we can further simplify:\newline416sec2(θ)(45)sec2(θ)dθ=445dθ\int\frac{4}{16\sec^2(\theta)} \left(\frac{4}{5}\right)\sec^2(\theta)d\theta = \int\frac{4}{\frac{4}{5}}d\theta
  3. Simplify Expression: We can now cancel out the sec2(θ)\sec^2(\theta) terms and simplify the constants:\newline4(45)dθ=5dθ\int \frac{4}{\left(\frac{4}{5}\right)}d\theta = \int 5d\theta\newlineThis integral is straightforward to evaluate:\newline5dθ=5θ+C\int 5d\theta = 5\theta + C
  4. Evaluate Integral: We now need to substitute back for θ\theta using our original substitution x=45tan(θ)x = \frac{4}{5}\tan(\theta). To find θ\theta, we take the arctangent of both sides:\newlineθ=arctan(54×x)\theta = \arctan(\frac{5}{4} \times x)\newlineSo our integral in terms of xx is:\newline5θ+C=5×arctan(54×x)+C5\theta + C = 5\times\arctan(\frac{5}{4} \times x) + C

More problems from Evaluate definite integrals using the power rule