Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate:

sum_(n=1)^(5)(-3x-4n)
Answer:

Evaluate:\newlinen=15(3x4n) \sum_{n=1}^{5}(-3 x-4 n) \newlineAnswer:

Full solution

Q. Evaluate:\newlinen=15(3x4n) \sum_{n=1}^{5}(-3 x-4 n) \newlineAnswer:
  1. Understand the problem: Understand the problem.\newlineWe need to evaluate the sum of the expression 3x4n -3x - 4n for n n ranging from 1 1 to 5 5 . This is a finite arithmetic series where n n is the variable and x x is considered a constant within the context of the sum.
  2. Write out the terms: Write out the terms of the sum.\newlineThe sum can be written out as:\newline(3x4×1)+(3x4×2)+(3x4×3)+(3x4×4)+(3x4×5)(-3x - 4\times 1) + (-3x - 4\times 2) + (-3x - 4\times 3) + (-3x - 4\times 4) + (-3x - 4\times 5)
  3. Simplify each term: Simplify each term in the sum.\newlineNow we simplify each term:\newline(3x4)+(3x8)+(3x12)+(3x16)+(3x20)(-3x - 4) + (-3x - 8) + (-3x - 12) + (-3x - 16) + (-3x - 20)
  4. Combine like terms: Combine like terms.\newlineWe can combine the constant terms and the terms with xx:\newline(3x3x3x3x3x)+(48121620)(-3x - 3x - 3x - 3x - 3x) + (-4 - 8 - 12 - 16 - 20)\newlineThis simplifies to:\newline15x+(48121620)-15x + (-4 - 8 - 12 - 16 - 20)
  5. Calculate sum of constants: Calculate the sum of the constant terms.\newlineNow we calculate the sum of the constant terms:\newline48121620=60-4 - 8 - 12 - 16 - 20 = -60
  6. Combine xx terms: Combine the xx terms with the sum of the constant terms.\newlineNow we combine the 15x-15x term with the sum of the constant terms:\newline15x60-15x - 60
  7. Write final answer: Write the final answer.\newlineThe final answer is the expression we have obtained:\newline15x60-15x - 60

More problems from Evaluate definite integrals using the chain rule