Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate:

sum_(n=0)^(4)(-5x-5n)
Answer:

Evaluate:\newlinen=04(5x5n) \sum_{n=0}^{4}(-5 x-5 n) \newlineAnswer:

Full solution

Q. Evaluate:\newlinen=04(5x5n) \sum_{n=0}^{4}(-5 x-5 n) \newlineAnswer:
  1. Write Series to Sum: Write down the series that needs to be summed.\newlineThe series is given by n=04(5x5n)\sum_{n=0}^{4}(-5x - 5n).
  2. Evaluate Series Terms: Evaluate the series by plugging in the values of nn from 00 to 44 and adding the terms.\newlinen=04(5x5n)=(5x50)+(5x51)+(5x52)+(5x53)+(5x54)\sum_{n=0}^{4}(-5x - 5n) = (-5x - 5\cdot 0) + (-5x - 5\cdot 1) + (-5x - 5\cdot 2) + (-5x - 5\cdot 3) + (-5x - 5\cdot 4)
  3. Simplify Expression: Simplify the expression by performing the multiplication and addition.\newline=(5x0)+(5x5)+(5x10)+(5x15)+(5x20)= (-5x - 0) + (-5x - 5) + (-5x - 10) + (-5x - 15) + (-5x - 20)\newline=5x+5x+5x+5x+5x05101520= -5x + -5x + -5x + -5x + -5x - 0 - 5 - 10 - 15 - 20
  4. Combine Like Terms: Combine like terms.\newline=5x×5(0+5+10+15+20)= -5x \times 5 - (0 + 5 + 10 + 15 + 20)\newline=25x(0+5+10+15+20)= -25x - (0 + 5 + 10 + 15 + 20)
  5. Calculate Sum of Constants: Calculate the sum of the constants. 0+5+10+15+20=500 + 5 + 10 + 15 + 20 = 50
  6. Substitute Constants: Substitute the sum of the constants back into the expression.\newline=25x50= -25x - 50
  7. Final Simplified Expression: The final simplified expression represents the sum of the series. The sum of the series from n=0n=0 to n=4n=4 is 25x50-25x - 50.

More problems from Evaluate definite integrals using the chain rule