Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate:

sum_(n=0)^(4)(4x+n)
Answer:

Evaluate:\newlinen=04(4x+n) \sum_{n=0}^{4}(4 x+n) \newlineAnswer:

Full solution

Q. Evaluate:\newlinen=04(4x+n) \sum_{n=0}^{4}(4 x+n) \newlineAnswer:
  1. Write Series Terms: Write down the series to be summed.\newlineThe series is n=04(4x+n)\sum_{n=0}^{4}(4x+n), which means we need to add together the terms 4x+04x+0, 4x+14x+1, 4x+24x+2, 4x+34x+3, and 4x+44x+4.
  2. Calculate Series Sum: Calculate the sum of the series.\newlineTo find the sum, we add all the terms together:\newline(4x+0)+(4x+1)+(4x+2)+(4x+3)+(4x+4)(4x+0) + (4x+1) + (4x+2) + (4x+3) + (4x+4)\newline=4x+4x+4x+4x+4x+(0+1+2+3+4)= 4x + 4x + 4x + 4x + 4x + (0 + 1 + 2 + 3 + 4)\newline=20x+(0+1+2+3+4)= 20x + (0 + 1 + 2 + 3 + 4)
  3. Simplify Constant Sum: Simplify the constant part of the sum.\newlineWe add the numbers 00 through 44:\newline0+1+2+3+4=100 + 1 + 2 + 3 + 4 = 10
  4. Combine XX and Constant: Combine the xx terms with the constant sum.\newlineNow we combine the sum of the xx terms with the sum of the constants:\newline20x+1020x + 10

More problems from Evaluate definite integrals using the chain rule