Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate 
Lim_(nrarr oo)(tan[(pi-4)/(4)+(1+(1)/(n))^(a)])^(n)(alpha inQ)

Evaluate Limn(tan[π44+(1+1n)a])n(αQ) \operatorname{Lim}_{\mathrm{n} \rightarrow \infty}\left(\tan \left[\frac{\pi-4}{4}+\left(1+\frac{1}{\mathrm{n}}\right)^{a}\right]\right)^{\mathrm{n}}(\alpha \in \mathrm{Q})

Full solution

Q. Evaluate Limn(tan[π44+(1+1n)a])n(αQ) \operatorname{Lim}_{\mathrm{n} \rightarrow \infty}\left(\tan \left[\frac{\pi-4}{4}+\left(1+\frac{1}{\mathrm{n}}\right)^{a}\right]\right)^{\mathrm{n}}(\alpha \in \mathrm{Q})
  1. Simplify Expression: First, let's simplify the expression inside the tangent function. We have:\newlinetan[π44+(1+1n)a]\tan\left[\frac{\pi-4}{4} + \left(1 + \frac{1}{n}\right)^{a}\right]\newlineSince α\alpha is a rational number, we can denote it as α=pq\alpha = \frac{p}{q} where pp and qq are integers. The expression (1+1n)a\left(1 + \frac{1}{n}\right)^{a} can be approximated as 11 when nn approaches infinity, because (1+1n)\left(1 + \frac{1}{n}\right) tends to 11 and any power of 11 is still 11. So, the expression inside the tangent function simplifies to:\newlineα\alpha22
  2. Calculate Angle: Now, let's calculate the exact value of the angle inside the tangent function:\newline(π4)/4+1=π/41+1=π/4(\pi-4)/4 + 1 = \pi/4 - 1 + 1 = \pi/4\newlineSo, the expression simplifies to:\newlinetan(π/4)\tan(\pi/4)\newlineWe know that tan(π/4)=1\tan(\pi/4) = 1, so the expression inside the limit becomes:\newline(1)(n)(1)^{(n)}
  3. Evaluate Limit: Since (1)(n)(1)^{(n)} is simply 11 for any value of nn, the limit as nn approaches infinity of (1)(n)(1)^{(n)} is just 11. Therefore, the limit of the original expression is: limn(tan[π44+(1+1n)(a)])(n)=1\lim_{n\to\infty}(\tan\left[\frac{\pi-4}{4} + (1 + \frac{1}{n})^{(a)}\right])^{(n)} = 1

More problems from Evaluate definite integrals using the chain rule