Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate 
int_(-8)^(e-9)(3x+25)/(x+9)dx. Write your answer in simplest form with all logs condensed into a single logarithm (if necessary).

Evaluate 8e93x+25x+9dx \int_{-8}^{e-9} \frac{3 x+25}{x+9} d x . Write your answer in simplest form with all logs condensed into a single logarithm (if necessary).

Full solution

Q. Evaluate 8e93x+25x+9dx \int_{-8}^{e-9} \frac{3 x+25}{x+9} d x . Write your answer in simplest form with all logs condensed into a single logarithm (if necessary).
  1. Simplify integrand: Simplify the integrand.\newlineWe have the integral of a rational function:\newline8e93x+25x+9dx\int_{-8}^{e-9}\frac{3x+25}{x+9}\,dx\newlineWe can divide the numerator by the denominator to simplify the integrand.\newline3x+25x+9=3+16x+9\frac{3x+25}{x+9} = 3 + \frac{16}{x+9}\newlineSo the integral becomes:\newline8e9(3+16x+9)dx\int_{-8}^{e-9}(3 + \frac{16}{x+9})\,dx
  2. Split into two integrals: Split the integral into two separate integrals.\newline8e9(3+16x+9)dx=8e93dx+8e916x+9dx\int_{-8}^{e-9}(3 + \frac{16}{x+9})dx = \int_{-8}^{e-9}3dx + \int_{-8}^{e-9}\frac{16}{x+9}dx
  3. Evaluate first integral: Evaluate the first integral.\newlineThe integral of a constant is just the constant times the variable, so:\newline8e93dx=3x\int_{-8}^{e-9}3dx = 3x evaluated from 8-8 to e9e-9.\newlineThis gives us:\newline3(e9)3(8)=3e27+24=3e33(e-9) - 3(-8) = 3e - 27 + 24 = 3e - 3
  4. Evaluate second integral: Evaluate the second integral.\newlineThe integral of 16x+9\frac{16}{x+9} is 1616 times the natural log of the absolute value of x+9x+9, so:\newline8e916x+9dx=16lnx+9\int_{-8}^{e-9}\frac{16}{x+9}dx = 16\ln|x+9| evaluated from 8-8 to e9e-9.\newlineThis gives us:\newline16lne9+916ln8+9=16lne16ln1=16ln(e)16ln(1)16\ln|e-9+9| - 16\ln|-8+9| = 16\ln|e| - 16\ln|1| = 16\ln(e) - 16\ln(1)\newlineSince ln(e)=1\ln(e) = 1 and ln(1)=0\ln(1) = 0, this simplifies to:\newline16(1)16(0)=1616(1) - 16(0) = 16
  5. Combine results: Combine the results from Step 33 and Step 44.\newlineAdding the results from the two integrals, we get:\newline(3e3)+16=3e+13(3e - 3) + 16 = 3e + 13
  6. Write final answer: Write the final answer in simplest form.\newlineThe final answer is the sum of the two parts of the integral: 3e+133e + 13

More problems from Evaluate definite integrals using the chain rule