Q. Evaluate ∫6e3+5x−53x−16dx. Write your answer in simplest form with all logs condensed into a single logarithm (if necessary).
Rewrite Integral: We have the integral: ∫6e3+5x−53x−16dxTo solve this integral, we will use the method of partial fractions. However, we notice that the numerator is already a degree less than the denominator, so we can proceed directly to integration.
Integrate Constant Term: We can rewrite the integral as:∫6e3+5(3−x−53⋅5−16)dxThis simplifies to:∫6e3+5(3−x−51)dxNow we can integrate term by term.
Integrate Fraction Term: The integral of the constant 3 is:∫6e3+53dx=3x∣∣6e3+5Evaluating this from 6 to e3+5 gives:3(e3+5)−3(6)=3e3+15−18=3e3−3
Combine Results: The integral of −1/(x−5) is:∫6e3+5(−x−51)dx=−ln∣x−5∣∣∣6e3+5Evaluating this from 6 to e3+5 gives:−ln∣e3+5−5∣+ln∣6−5∣=−ln∣e3∣+ln∣1∣=−3ln(e)+ln(1)Since ln(e)=1 and ln(1)=0, this simplifies to:−3(1)+0=−3
Combine Results: The integral of −1/(x−5) is:∫6e3+5(−x−51)dx=−ln∣x−5∣∣∣6e3+5Evaluating this from 6 to e3+5 gives:−ln∣e3+5−5∣+ln∣6−5∣=−ln∣e3∣+ln∣1∣=−3ln(e)+ln(1)Since ln(e)=1 and ln(1)=0, this simplifies to:−3(1)+0=−3Combining the results from the two integrals, we get:(3e3−3)−3=3e3−3−3=3e3−6This is the final answer in its simplest form.
More problems from Evaluate definite integrals using the chain rule