Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate 
int_(6)^(e^(3)+5)(3x-16)/(x-5)dx. Write your answer in simplest form with all logs condensed into a single logarithm (if necessary).

Evaluate 6e3+53x16x5dx \int_{6}^{e^{3}+5} \frac{3 x-16}{x-5} d x . Write your answer in simplest form with all logs condensed into a single logarithm (if necessary).

Full solution

Q. Evaluate 6e3+53x16x5dx \int_{6}^{e^{3}+5} \frac{3 x-16}{x-5} d x . Write your answer in simplest form with all logs condensed into a single logarithm (if necessary).
  1. Rewrite Integral: We have the integral: \newline6e3+53x16x5dx\int_{6}^{e^{3}+5}\frac{3x-16}{x-5}\,dx\newlineTo solve this integral, we will use the method of partial fractions. However, we notice that the numerator is already a degree less than the denominator, so we can proceed directly to integration.
  2. Integrate Constant Term: We can rewrite the integral as:\newline6e3+5(33516x5)dx\int_{6}^{e^{3}+5}(3 - \frac{3\cdot 5-16}{x-5})dx\newlineThis simplifies to:\newline6e3+5(31x5)dx\int_{6}^{e^{3}+5}(3 - \frac{1}{x-5})dx\newlineNow we can integrate term by term.
  3. Integrate Fraction Term: The integral of the constant 33 is:\newline6e3+53dx=3x6e3+5\int_{6}^{e^{3}+5}3dx = 3x \bigg|_{6}^{e^{3}+5}\newlineEvaluating this from 66 to e3+5e^{3}+5 gives:\newline3(e3+5)3(6)=3e3+1518=3e333(e^{3}+5) - 3(6) = 3e^{3} + 15 - 18 = 3e^{3} - 3
  4. Combine Results: The integral of 1/(x5)-1/(x-5) is:\newline6e3+5(1x5)dx=lnx56e3+5\int_{6}^{e^{3}+5}\left(-\frac{1}{x-5}\right)dx = -\ln|x-5| \bigg|_{6}^{e^{3}+5}\newlineEvaluating this from 66 to e3+5e^{3}+5 gives:\newlinelne3+55+ln65=lne3+ln1=3ln(e)+ln(1)-\ln|e^{3}+5-5| + \ln|6-5| = -\ln|e^{3}| + \ln|1| = -3\ln(e) + \ln(1)\newlineSince ln(e)=1\ln(e) = 1 and ln(1)=0\ln(1) = 0, this simplifies to:\newline3(1)+0=3-3(1) + 0 = -3
  5. Combine Results: The integral of 1/(x5)-1/(x-5) is:\newline6e3+5(1x5)dx=lnx56e3+5\int_{6}^{e^{3}+5} \left(-\frac{1}{x-5}\right)dx = -\ln|x-5| \bigg|_{6}^{e^{3}+5}\newlineEvaluating this from 66 to e3+5e^{3}+5 gives:\newlinelne3+55+ln65=lne3+ln1=3ln(e)+ln(1)-\ln|e^{3}+5-5| + \ln|6-5| = -\ln|e^{3}| + \ln|1| = -3\ln(e) + \ln(1)\newlineSince ln(e)=1\ln(e) = 1 and ln(1)=0\ln(1) = 0, this simplifies to:\newline3(1)+0=3-3(1) + 0 = -3Combining the results from the two integrals, we get:\newline(3e33)3=3e333=3e36(3e^{3} - 3) - 3 = 3e^{3} - 3 - 3 = 3e^{3} - 6\newlineThis is the final answer in its simplest form.

More problems from Evaluate definite integrals using the chain rule