Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate 
int(2x^(3)+7x^(2)+2x+9)/(2x+3)dx.
Choose 1 answer:
(A) 
(x^(3))/(3)+x^(2)-2x+(15 ln |2x+3|)/(2)+C
(B) 
(x^(3))/(3)+x^(2)-2x+(5ln |2x+3|)/(2)+C
(C) 
(x^(3))/(3)+(x^(2))/(2)-2x+(15 ln |2x+3|)/(2)+C
(D) 
(x^(3))/(3)+(x^(2))/(2)-2x+(5ln |2x+3|)/(2)+C

Evaluate 2x3+7x2+2x+92x+3dx \int \frac{2 x^{3}+7 x^{2}+2 x+9}{2 x+3} d x .\newlineChoose 11 answer:\newline(A) x33+x22x+15ln2x+32+C \frac{x^{3}}{3}+x^{2}-2 x+\frac{15 \ln |2 x+3|}{2}+C \newline(B) x33+x22x+5ln2x+32+C \frac{x^{3}}{3}+x^{2}-2 x+\frac{5 \ln |2 x+3|}{2}+C \newline(C) x33+x222x+15ln2x+32+C \frac{x^{3}}{3}+\frac{x^{2}}{2}-2 x+\frac{15 \ln |2 x+3|}{2}+C \newline(D) x33+x222x+5ln2x+32+C \frac{x^{3}}{3}+\frac{x^{2}}{2}-2 x+\frac{5 \ln |2 x+3|}{2}+C

Full solution

Q. Evaluate 2x3+7x2+2x+92x+3dx \int \frac{2 x^{3}+7 x^{2}+2 x+9}{2 x+3} d x .\newlineChoose 11 answer:\newline(A) x33+x22x+15ln2x+32+C \frac{x^{3}}{3}+x^{2}-2 x+\frac{15 \ln |2 x+3|}{2}+C \newline(B) x33+x22x+5ln2x+32+C \frac{x^{3}}{3}+x^{2}-2 x+\frac{5 \ln |2 x+3|}{2}+C \newline(C) x33+x222x+15ln2x+32+C \frac{x^{3}}{3}+\frac{x^{2}}{2}-2 x+\frac{15 \ln |2 x+3|}{2}+C \newline(D) x33+x222x+5ln2x+32+C \frac{x^{3}}{3}+\frac{x^{2}}{2}-2 x+\frac{5 \ln |2 x+3|}{2}+C
  1. Divide and Multiply: Divide 2x32x^3 by 2x2x to get x2x^2. Multiply (2x+3)(2x + 3) by x2x^2 to get 2x3+3x22x^3 + 3x^2. Subtract this from the original polynomial to get 4x2+2x+94x^2 + 2x + 9.
  2. Subtract and Simplify: Now divide 4x24x^2 by 2x2x to get 2x2x. Multiply (2x+3)(2x + 3) by 2x2x to get 4x2+6x4x^2 + 6x. Subtract this from the remaining polynomial to get 4x+9-4x + 9.
  3. Divide and Multiply: Divide 4x-4x by 2x2x to get 2-2. Multiply (2x+3)(2x + 3) by 2-2 to get 4x6-4x - 6. Subtract this from the remaining polynomial to get 1515.
  4. Subtract and Simplify: So, the polynomial long division gives us x2+2x2+152x+3x^2 + 2x - 2 + \frac{15}{2x + 3}. Now we can integrate each term separately.
  5. Integrate Each Term: Integrate x2x^2 to get (1/3)x3(1/3)x^3. Integrate 2x2x to get x2x^2. Integrate 2-2 to get 2x-2x. Integrate 15/(2x+3)15/(2x + 3) to get (15/2)ln2x+3(15/2)\ln|2x + 3|. Don't forget the constant of integration CC.
  6. Combine Integrated Parts: Combine all the integrated parts to get the final answer: (13)x3+x22x+(152)ln2x+3+C(\frac{1}{3})x^3 + x^2 - 2x + (\frac{15}{2})\ln|2x + 3| + C.

More problems from Evaluate definite integrals using the chain rule