Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate 
int_(2)^(3)(4x^(2)-11 x-22)/(x-4)dx. Write your answer in simplest form with all logs condensed into a single logarithm (if necessary).
Submit Answer

Evaluate 234x211x22x4dx \int_{2}^{3} \frac{4 x^{2}-11 x-22}{x-4} d x . Write your answer in simplest form with all logs condensed into a single logarithm (if necessary).\newlineSubmit Answer

Full solution

Q. Evaluate 234x211x22x4dx \int_{2}^{3} \frac{4 x^{2}-11 x-22}{x-4} d x . Write your answer in simplest form with all logs condensed into a single logarithm (if necessary).\newlineSubmit Answer
  1. Perform Polynomial Long Division: First, we will perform polynomial long division to simplify the integrand (4x211x22)/(x4)(4x^2 - 11x - 22) / (x - 4).
  2. Simplify Integrands: The division gives us:\newline4x211x22=(x4)(4x+5)+24x^2 - 11x - 22 = (x - 4)(4x + 5) + 2\newlineSo, (4x211x22)/(x4)=4x+5+2x4(4x^2 - 11x - 22) / (x - 4) = 4x + 5 + \frac{2}{x - 4}
  3. Write Integral as Sum: Now we can write the integral as the sum of two simpler integrals: 23(4x+5+2x4)dx\int_{2}^{3}(4x + 5 + \frac{2}{x - 4}) \, dx
  4. Integrate Each Term: We can integrate each term separately:\newline(4x+5)dx=2x2+5x+C\int(4x + 5) \, dx = 2x^2 + 5x + C\newline(2x4)dx=2lnx4+C\int\left(\frac{2}{x - 4}\right) dx = 2\ln|x - 4| + C
  5. Evaluate Antiderivatives: Now we evaluate the antiderivatives from 22 to 33: \newline(2(3)2+5(3))(2(2)2+5(2))+2ln342ln24(2(3)^2 + 5(3)) - (2(2)^2 + 5(2)) + 2\ln|3 - 4| - 2\ln|2 - 4|
  6. Perform Calculations: Perform the calculations:\newline(2(9)+15)(2(4)+10)+2ln12ln2(2(9) + 15) - (2(4) + 10) + 2\ln|-1| - 2\ln|-2|\newline(18+15)(8+10)+2ln(1)2ln(2)(18 + 15) - (8 + 10) + 2\ln(1) - 2\ln(2)\newline3318+02ln(2)33 - 18 + 0 - 2\ln(2)\newline152ln(2)15 - 2\ln(2)
  7. Final Answer: The final answer is: 152ln(2)15 - 2\ln(2)

More problems from Evaluate definite integrals using the chain rule