Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate 
int_(11)^(e^(3)+10)(2x-19)/(x-10)dx. Write your answer in simplest form with all logs condensed into a single logarithm (if necessary).

Evaluate 11e3+102x19x10dx \int_{11}^{e^{3}+10} \frac{2 x-19}{x-10} d x . Write your answer in simplest form with all logs condensed into a single logarithm (if necessary).

Full solution

Q. Evaluate 11e3+102x19x10dx \int_{11}^{e^{3}+10} \frac{2 x-19}{x-10} d x . Write your answer in simplest form with all logs condensed into a single logarithm (if necessary).
  1. Simplify: Simplify the integrand if possible.\newlineThe integrand (2x19)/(x10)(2x-19)/(x-10) can be simplified by long division since the degree of the numerator is equal to the degree of the denominator. We divide 2x2x by xx to get 22 and multiply (x10)(x-10) by 22 to get 2x202x-20. We then subtract this from the numerator to get a remainder of 11. So, the integrand simplifies to 2+1/(x10)2 + 1/(x-10).
  2. Break down: Break the integral into two simpler integrals.\newlineWe can write the integral as the sum of two simpler integrals:\newline2x19x10dx=2dx+1x10dx\int\frac{2x-19}{x-10} dx = \int 2 dx + \int\frac{1}{x-10} dx
  3. Integrate separately: Integrate each term separately.\newlineThe integral of 22 with respect to xx is 2x2x, and the integral of 1/(x10)1/(x-10) with respect to xx is lnx10\ln|x-10|. So we have:\newline2dx=2x\int 2 \, dx = 2x\newline1(x10)dx=lnx10\int \frac{1}{(x-10)} \, dx = \ln|x-10|
  4. Combine and evaluate: Combine the antiderivatives and evaluate the definite integral.\newlineThe combined antiderivative is 2x+lnx102x + \ln|x-10|. We need to evaluate this from 1111 to e3+10e^{3}+10:\newline(2x+lnx10)(2x + \ln|x-10|) evaluated from 1111 to e3+10e^{3}+10 is:\newline(2(e3+10)+lne3+1010)(2(11)+ln1110)(2(e^{3}+10) + \ln|e^{3}+10-10|) - (2(11) + \ln|11-10|)
  5. Simplify expression: Simplify the expression.\newlineNow we plug in the limits of integration:\newline=(2(e3+10)+lne3)(22+ln1)= (2(e^{3}+10) + \ln|e^{3}|) - (22 + \ln|1|)\newline=(2e3+20+ln(e3))(22+ln(1))= (2e^{3} + 20 + \ln(e^{3})) - (22 + \ln(1))\newlineSince ln(e3)=3\ln(e^{3}) = 3 and ln(1)=0\ln(1) = 0, we can further simplify:\newline=(2e3+20+3)(22+0)= (2e^{3} + 20 + 3) - (22 + 0)\newline=2e3+2322= 2e^{3} + 23 - 22\newline=2e3+1= 2e^{3} + 1

More problems from Evaluate definite integrals using the chain rule