Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate 
int_(11)^(e^(2)+10)(4x-43)/(x-10)dx. Write your answer in simplest form with all logs condensed into a single logarithm (if necessary).

Evaluate 11e2+104x43x10dx \int_{11}^{e^{2}+10} \frac{4 x-43}{x-10} d x . Write your answer in simplest form with all logs condensed into a single logarithm (if necessary).

Full solution

Q. Evaluate 11e2+104x43x10dx \int_{11}^{e^{2}+10} \frac{4 x-43}{x-10} d x . Write your answer in simplest form with all logs condensed into a single logarithm (if necessary).
  1. Simplify Integrand: Simplify the integrand if possible.\newlineThe integrand (4x43)/(x10)(4x-43)/(x-10) can be simplified by long division since the degree of the numerator is equal to the degree of the denominator. We divide 4x4x by xx to get 44 and multiply (x10)(x-10) by 44 to get 4x404x-40. We subtract this from the numerator to get a remainder of 3-3. So, the integrand simplifies to 43/(x10)4 - 3/(x-10).
  2. Split Integral: Split the integral into two separate integrals.\newlineThe integral of the sum is the sum of the integrals, so we can write:\newline4x43x10dx=4dx43x10dx\int\frac{4x-43}{x-10} \, dx = \int 4 \, dx - \int\frac{43}{x-10} \, dx
  3. Integrate Terms: Integrate each term separately.\newlineThe integral of a constant is just the constant times the variable, so:\newline4dx=4x\int 4 \, dx = 4x\newlineThe integral of 3(x10)\frac{3}{(x-10)} is 33 times the natural logarithm of the absolute value of (x10)(x-10), so:\newline3(x10)dx=3lnx10\int \frac{3}{(x-10)} \, dx = 3\ln|x-10|
  4. Combine Integrals: Combine the two integrals.\newlineThe combined integral is:\newline4x43x10dx=4x3lnx10\int\frac{4x-43}{x-10} dx = 4x - 3\ln|x-10|
  5. Evaluate Definite Integral: Evaluate the definite integral from 1111 to e2+10e^{2}+10. We substitute the upper and lower limits into the antiderivative: (4(e2+10)3lne2+1010)(4(11)3ln1110)(4(e^{2}+10) - 3\ln|e^{2}+10-10|) - (4(11) - 3\ln|11-10|)
  6. Simplify Expression: Simplify the expression.\newlineWe simplify the expression by performing the arithmetic:\newline= (4e2+403lne2)(443ln1)(4e^{2}+40 - 3\ln|e^{2}|) - (44 - 3\ln|1|)\newlineSince lne2=2\ln|e^{2}| = 2 (because elnx=xe^{\ln x} = x for any xx) and ln1=0\ln|1| = 0 (because e0=1e^{0} = 1), we get:\newline= (4e2+403×2)(443×0)(4e^{2}+40 - 3\times 2) - (44 - 3\times 0)\newline= (4e2+406)(44)(4e^{2}+40 - 6) - (44)\newline= 4e2+34444e^{2}+34 - 44\newline= 4e2104e^{2} - 10
  7. Write Final Answer: Write the final answer.\newlineThe final answer is the simplified form of the definite integral from 1111 to e2+10e^{2}+10 of the function (4x43)/(x10)(4x-43)/(x-10).

More problems from Evaluate definite integrals using the chain rule