Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate 
int_(11)^(e^(2)+10)(4x-41)/(x-10)dx. Write your answer in simplest form with all logs condensed into a single logarithm (if necessary).

Evaluate 11e2+104x41x10dx \int_{11}^{e^{2}+10} \frac{4 x-41}{x-10} d x . Write your answer in simplest form with all logs condensed into a single logarithm (if necessary).

Full solution

Q. Evaluate 11e2+104x41x10dx \int_{11}^{e^{2}+10} \frac{4 x-41}{x-10} d x . Write your answer in simplest form with all logs condensed into a single logarithm (if necessary).
  1. Simplify Integrand: Simplify the integrand if possible.\newlineThe integrand (4x41)/(x10)(4x-41)/(x-10) can be simplified by long division since the degree of the numerator is equal to the degree of the denominator. We divide 4x4x by xx to get 44 and multiply (x10)(x-10) by 44 to get 4x404x-40. We subtract this from the numerator to get a remainder of 1-1. So, the integrand simplifies to 41/(x10)4 - 1/(x-10).
  2. Split Integral: Split the integral into two simpler integrals.\newlineWe can write the integral as the sum of two simpler integrals:\newline4x41x10dx=4dx1x10dx\int\frac{4x-41}{x-10} \, dx = \int 4 \, dx - \int\frac{1}{x-10} \, dx.
  3. Integrate Terms: Integrate each term separately.\newlineThe integral of 44 with respect to xx is 4x4x, and the integral of 1/(x10)1/(x-10) with respect to xx is lnx10\ln|x-10|. So we have:\newline4dx=4x\int 4 \, dx = 4x and 1(x10)dx=lnx10\int \frac{1}{(x-10)} \, dx = \ln|x-10|.
  4. Combine Results: Combine the results and apply the limits of integration.\newlineCombining the results from the previous step, we get:\newline4x41x10dx=4xlnx10\int\frac{4x-41}{x-10} dx = 4x - \ln|x-10| from 1111 to e2+10e^{2}+10.\newlineNow we need to evaluate this expression from 1111 to e2+10e^{2}+10:\newline[4xlnx10][4x - \ln|x-10|] evaluated from 1111 to e2+10e^{2}+10 = [4(e2+10)lne2+1010][4(11)ln1110][4(e^{2}+10) - \ln|e^{2}+10-10|] - [4(11) - \ln|11-10|].
  5. Perform Evaluation: Perform the evaluation at the upper and lower limits.\newlineFirst, we evaluate at the upper limit e2+10e^{2}+10:\newline4(e2+10)lne2+1010=4e2+40lne24(e^{2}+10) - \ln|e^{2}+10-10| = 4e^{2} + 40 - \ln|e^{2}|.\newlineSince e2e^{2} is positive, we can remove the absolute value:\newline4e2+40ln(e2)=4e2+4024e^{2} + 40 - \ln(e^{2}) = 4e^{2} + 40 - 2.\newlineNext, we evaluate at the lower limit 1111:\newline4(11)ln1110=44ln1=4404(11) - \ln|11-10| = 44 - \ln|1| = 44 - 0 (since ln(1)=0\ln(1) = 0).
  6. Subtract Limits: Subtract the lower limit evaluation from the upper limit evaluation.\newlineNow we subtract the lower limit result from the upper limit result:\newline[4e2+402][44]=4e2+40244=4e26[4e^{2} + 40 - 2] - [44] = 4e^{2} + 40 - 2 - 44 = 4e^{2} - 6.
  7. Write Final Answer: Write the final answer.\newlineThe final answer is the result of the subtraction from the previous step:\newline4e264e^{2} - 6.

More problems from Evaluate definite integrals using the chain rule