Simplify Denominator: Step 1: Simplify the denominator.We start by completing the square for the denominator x2+6x+13.(x+3)2−9+13=(x+3)2+4.
Rewrite Integral: Step 2: Rewrite the integral.Now, rewrite the integral using the completed square:∫(x+3)2+41dx.
Identify Integral Form: Step 3: Identify the integral form.This integral is of the form ∫u2+a21du, where u=x+3 and a=2.
Use Standard Integral Formula: Step 4: Use the standard integral formula.The integral ∫u2+a21du=a1tan−1(au)+C.Substitute u=x+3 and a=2:21tan−1(2x+3)+C.
More problems from Evaluate definite integrals using the chain rule