Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate 1x2+6x+13dx\int\frac{1}{x^{2}+6x+13}\,dx\newline(A) ln(x+3)2+4+C\ln|\left(x+3\right)^{2}+4|+C\newline(B) 12tan1(x+32)+C-\frac{1}{2}\tan^{-1}\left(\frac{x+3}{2}\right)+C\newline(C) (1x2+6x+13)2+C-\left(\frac{1}{x^{2}+6x+13}\right)^{-2}+C\newline(D) 12tan1(x+32)+C\frac{1}{2}\tan^{-1}\left(\frac{x+3}{2}\right)+C

Full solution

Q. Evaluate 1x2+6x+13dx\int\frac{1}{x^{2}+6x+13}\,dx\newline(A) ln(x+3)2+4+C\ln|\left(x+3\right)^{2}+4|+C\newline(B) 12tan1(x+32)+C-\frac{1}{2}\tan^{-1}\left(\frac{x+3}{2}\right)+C\newline(C) (1x2+6x+13)2+C-\left(\frac{1}{x^{2}+6x+13}\right)^{-2}+C\newline(D) 12tan1(x+32)+C\frac{1}{2}\tan^{-1}\left(\frac{x+3}{2}\right)+C
  1. Simplify Denominator: Step 11: Simplify the denominator.\newlineWe start by completing the square for the denominator x2+6x+13x^2 + 6x + 13.\newline(x+3)29+13=(x+3)2+4(x + 3)^2 - 9 + 13 = (x + 3)^2 + 4.
  2. Rewrite Integral: Step 22: Rewrite the integral.\newlineNow, rewrite the integral using the completed square:\newline1(x+3)2+4dx\int \frac{1}{(x + 3)^2 + 4} \, dx.
  3. Identify Integral Form: Step 33: Identify the integral form.\newlineThis integral is of the form 1u2+a2du\int \frac{1}{u^2 + a^2} \, du, where u=x+3u = x + 3 and a=2a = 2.
  4. Use Standard Integral Formula: Step 44: Use the standard integral formula.\newlineThe integral 1u2+a2du=1atan1(ua)+C\int \frac{1}{u^2 + a^2} \, du = \frac{1}{a} \tan^{-1}\left(\frac{u}{a}\right) + C.\newlineSubstitute u=x+3u = x + 3 and a=2a = 2:\newline12tan1(x+32)+C\frac{1}{2} \tan^{-1}\left(\frac{x + 3}{2}\right) + C.

More problems from Evaluate definite integrals using the chain rule