Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate 
int_(0)^(6)(10e^(-0.5 x)-2x)dx and express the answer in simplest form.
Answer:

Evaluate 06(10e0.5x2x)dx \int_{0}^{6}\left(10 e^{-0.5 x}-2 x\right) d x and express the answer in simplest form.\newlineAnswer:

Full solution

Q. Evaluate 06(10e0.5x2x)dx \int_{0}^{6}\left(10 e^{-0.5 x}-2 x\right) d x and express the answer in simplest form.\newlineAnswer:
  1. Break down integral: Break down the integral into two separate integrals.\newlineWe have the integral of a sum of two functions, which can be separated into the sum of two integrals:\newline\int(\(10e^{(0-0.55x)} - 22x)\,dx = \int 1010e^{(0-0.55x)}\,dx - \int 22x\,dx
  2. Evaluate first integral: Evaluate the first integral 010e0.5xdx\int_{0}^{10}e^{-0.5x}\,dx. Let u=0.5xu = -0.5x, then du=0.5dxdu = -0.5dx, which implies dx=2dudx = -2du. The limits of integration also change with the substitution. When x=0x = 0, u=0u = 0, and when x=6x = 6, u=3u = -3. The integral becomes: 010eu2du=20eudu\int_{0}^{10}e^{u} \cdot -2du = -20\int e^{u} \,du The integral of eue^{u} with respect to u=0.5xu = -0.5x00 is eue^{u}, so we have: u=0.5xu = -0.5x22 Substituting back for u=0.5xu = -0.5x00, we get: u=0.5xu = -0.5x44
  3. Evaluate second integral: Evaluate the second integral 2xdx\int 2x\,dx. The integral of xx with respect to xx is (1/2)x2(1/2)x^2, so we have: 2xdx=2×(1/2)x2=x2\int 2x\,dx = 2 \times (1/2)x^2 = x^2
  4. Combine results: Combine the results from Step 22 and Step 33.\newlineThe combined indefinite integral is:\newline20e(0.5x)+x2+C-20e^{(-0.5x)} + x^2 + C
  5. Evaluate definite integral: Evaluate the definite integral from 00 to 66. We need to calculate the value of the combined integral at the upper limit (x=6x = 6) and subtract the value at the lower limit (x=0x = 0). For the first part, 20e0.5x-20e^{-0.5x}, at x=6x = 6 we have 20e3-20e^{-3}, and at x=0x = 0 we have 20e0=20-20e^{0} = -20. For the second part, x2x^2, at x=6x = 6 we have 6611, and at x=0x = 0 we have 6633. So the definite integral is: 6644
  6. Simplify expression: Simplify the expression.\newlineSimplify the expression by combining like terms and calculating the value of e3e^{-3}.\newline(20/e3+36)(20)(-20/e^3 + 36) - (-20)\newline=20/e3+36+20= -20/e^3 + 36 + 20\newline=5620/e3= 56 - 20/e^3

More problems from Evaluate definite integrals using the chain rule