Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate 
int_(0)^(5)(7e^(0.2 x)+4x)dx and express the answer in simplest form.
Answer:

Evaluate 05(7e0.2x+4x)dx \int_{0}^{5}\left(7 e^{0.2 x}+4 x\right) d x and express the answer in simplest form.\newlineAnswer:

Full solution

Q. Evaluate 05(7e0.2x+4x)dx \int_{0}^{5}\left(7 e^{0.2 x}+4 x\right) d x and express the answer in simplest form.\newlineAnswer:
  1. Identify Integral: Identify the integral to be solved.\newlineWe need to evaluate the integral of the function 7e0.2x+4x7e^{0.2x} + 4x with respect to xx from 00 to 55.
  2. Break into Two: Break the integral into two separate integrals.\newlineThe integral of a sum is the sum of the integrals, so we can write:\newline\int(\(7e^{00.22x} + 44x)\,dx = \int 77e^{00.22x}\,dx + \int 44x\,dx
  3. Evaluate First Integral: Evaluate the first integral 7e0.2xdx\int 7e^{0.2x}\,dx. To integrate 7e0.2x7e^{0.2x}, we can use the substitution method or recognize that the integral of eaxe^{ax} is (1/a)eax(1/a)e^{ax}, where aa is a constant. So, 7e0.2xdx=(7/0.2)e0.2x=35e0.2x\int 7e^{0.2x}\,dx = (7/0.2)e^{0.2x} = 35e^{0.2x}
  4. Evaluate Second Integral: Evaluate the second integral 4xdx\int 4x\,dx.\newlineThe integral of 4x4x with respect to xx is 4x22\frac{4x^2}{2}, which simplifies to 2x22x^2.\newlineSo, 4xdx=2x2\int 4x\,dx = 2x^2
  5. Combine Results: Combine the results of the two integrals.\newlineThe combined integral is 35e0.2x+2x235e^{0.2x} + 2x^2.
  6. Apply Limits: Apply the limits of integration from 00 to 55. We need to evaluate (35e0.2x+2x2)(35e^{0.2x} + 2x^2) from x=0x = 0 to x=5x = 5. So, we calculate (35e0.2×5+2×52)(35e0.2×0+2×02)(35e^{0.2\times 5} + 2\times 5^2) - (35e^{0.2\times 0} + 2\times 0^2).
  7. Perform Upper Limit: Perform the calculations for the upper limit x=5x = 5. For x=5x = 5, we have 35e(0.2×5)+2×52=35e1+2×25=35e+5035e^{(0.2 \times 5)} + 2 \times 5^2 = 35e^1 + 2 \times 25 = 35e + 50.
  8. Perform Lower Limit: Perform the calculations for the lower limit x=0x = 0. For x=0x = 0, we have 35e(0.20)+202=35e0+0=351=3535e^{(0.2\cdot 0)} + 2\cdot 0^2 = 35e^0 + 0 = 35\cdot 1 = 35.
  9. Subtract Values: Subtract the value at the lower limit from the value at the upper limit.\newline(35e+50)35=35e+5035=35e+15(35e + 50) - 35 = 35e + 50 - 35 = 35e + 15.
  10. Write Final Answer: Write the final answer.\newlineThe integral from 00 to 55 of the function 7e0.2x+4x7e^{0.2x} + 4x is 35e+1535e + 15.

More problems from Evaluate definite integrals using the chain rule