Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate 
int_(0)^(5)(7e^(-0.2 x)-4x)dx and express the answer in simplest form.
Answer:

Evaluate 05(7e0.2x4x)dx \int_{0}^{5}\left(7 e^{-0.2 x}-4 x\right) d x and express the answer in simplest form.\newlineAnswer:

Full solution

Q. Evaluate 05(7e0.2x4x)dx \int_{0}^{5}\left(7 e^{-0.2 x}-4 x\right) d x and express the answer in simplest form.\newlineAnswer:
  1. Break down into two integrals: Break down the integral into two separate integrals.\newlineWe have the integral of a sum of two functions, which can be separated into the sum of two integrals:\newline\int(\(7e^{0-0.22x} - 44x)\,dx = \int 77e^{0-0.22x}\,dx - \int 44x\,dx
  2. Evaluate first integral: Evaluate the first integral 7e0.2xdx\int 7e^{-0.2x}\,dx. To integrate 7e0.2x7e^{-0.2x}, we use the fact that the integral of eaxe^{ax} is (1/a)eax(1/a)e^{ax}, where aa is a constant. So, 7e0.2xdx=7/0.2e0.2x=35e0.2x\int 7e^{-0.2x}\,dx = -7/0.2 \cdot e^{-0.2x} = -35e^{-0.2x}
  3. Evaluate second integral: Evaluate the second integral 4xdx\int 4x\,dx. The integral of 4x4x with respect to xx is 4x22\frac{4x^2}{2}, which simplifies to 2x22x^2. So, 4xdx=2x2\int 4x\,dx = 2x^2
  4. Combine results of integrals: Combine the results of the two integrals.\newlineThe combined indefinite integral is:\newline35e(0.2x)+2x2+C-35e^{(-0.2x)} + 2x^2 + C, where CC is the constant of integration.
  5. Evaluate definite integral: Evaluate the definite integral from 00 to 55. We need to calculate the value of the combined integral at the upper limit (x=5)(x=5) and subtract the value at the lower limit (x=0)(x=0). For x=5x=5: 35e(0.25)+252=35e(1)+50-35e^{(-0.2\cdot 5)} + 2\cdot 5^2 = -35e^{(-1)} + 50 For x=0x=0: 35e(0.20)+202=35e(0)+0=35-35e^{(-0.2\cdot 0)} + 2\cdot 0^2 = -35e^{(0)} + 0 = -35 Now, subtract the value at x=0x=0 from the value at x=5x=5: 5500
  6. Simplify the result: Simplify the result.\newline35e1+50+35=35e+85-35e^{-1} + 50 + 35 = -\frac{35}{e} + 85\newlineThis is the exact, simplified answer for the definite integral.

More problems from Evaluate definite integrals using the chain rule