Q. Evaluate ∫05(3e−0.2x−2x)dx and express the answer in simplest form.Answer:
Break down the integral: Break down the integral into two separate integrals. ∫05(3e−0.2x−2x)dx=∫053e−0.2xdx−∫052xdx
Evaluate first integral: Evaluate the first integral ∫053e−0.2xdx. Let u=−0.2x, then du=−0.2dx, which implies dx=−5du. The limits of integration change from x=0 to u=0 and from x=5 to u=−1. The integral becomes −15∫0−1eudu.
Calculate integral of eu: Calculate the integral of eu.∫eudu=eu+CSo, \(-15 \int_{0}^{−1}e^u \, du = −15(e^u)|_{0}^{−1} = −15(e^{−1} - e^{0}) = −15(\frac{1}{e} - 1)\]
Evaluate second integral: Evaluate the second integral ∫052xdx.∫xdx=21x2+CSo, ∫052xdx=2⋅(21x2)∣∣05=x2∣∣05=52−02=25
Combine results: Combine the results from Step 3 and Step 4. ∫05(3e−0.2x−2x)dx=−15(e1−1)+25
Simplify expression: Simplify the expression. −15(e1−1)+25=e−15+15+25=40−e15
More problems from Evaluate definite integrals using the chain rule