Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate 
int_(0)^(5)(3e^(-0.2 x)-2x)dx and express the answer in simplest form.
Answer:

Evaluate 05(3e0.2x2x)dx \int_{0}^{5}\left(3 e^{-0.2 x}-2 x\right) d x and express the answer in simplest form.\newlineAnswer:

Full solution

Q. Evaluate 05(3e0.2x2x)dx \int_{0}^{5}\left(3 e^{-0.2 x}-2 x\right) d x and express the answer in simplest form.\newlineAnswer:
  1. Break down the integral: Break down the integral into two separate integrals. 05(3e0.2x2x)dx=053e0.2xdx052xdx\int_{0}^{5}(3e^{-0.2x} - 2x)dx = \int_{0}^{5}3e^{-0.2x}dx - \int_{0}^{5}2xdx
  2. Evaluate first integral: Evaluate the first integral 053e0.2xdx\int_{0}^{5} 3e^{-0.2x} \, dx. Let u=0.2xu = -0.2x, then du=0.2dxdu = -0.2dx, which implies dx=5dudx = -5du. The limits of integration change from x=0x = 0 to u=0u = 0 and from x=5x = 5 to u=1u = -1. The integral becomes 1501eudu-15 \int_{0}^{-1} e^{u} \, du.
  3. Calculate integral of eue^u: Calculate the integral of eue^u.eudu=eu+C\int e^u \, du = e^u + CSo, \(-15 \int_{00}^{1-1}e^u \, du = 15-15(e^u)|_{00}^{1-1} = 15-15(e^{1-1} - e^{00}) = 15-15(\frac{11}{e} - 11)\]
  4. Evaluate second integral: Evaluate the second integral 052xdx\int_{0}^{5} 2x \, dx.xdx=12x2+C\int x \, dx = \frac{1}{2}x^2 + CSo, 052xdx=2(12x2)05=x205=5202=25\int_{0}^{5}2x\,dx = 2 \cdot \left(\frac{1}{2}x^2\right)\bigg|_{0}^{5} = x^2\bigg|_{0}^{5} = 5^2 - 0^2 = 25
  5. Combine results: Combine the results from Step 33 and Step 44. 05(3e0.2x2x)dx=15(1e1)+25\int_{0}^{5}(3e^{-0.2x} - 2x)\,dx = -15(\frac{1}{e} - 1) + 25
  6. Simplify expression: Simplify the expression. \newline15(1e1)+25=15e+15+25=4015e-15(\frac{1}{e} - 1) + 25 = \frac{-15}{e} + 15 + 25 = 40 - \frac{15}{e}

More problems from Evaluate definite integrals using the chain rule