Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate 
int_(0)^(5)(3e^(0.2 x)-2x)dx and express the answer in simplest form.
Answer:

Evaluate 05(3e0.2x2x)dx \int_{0}^{5}\left(3 e^{0.2 x}-2 x\right) d x and express the answer in simplest form.\newlineAnswer:

Full solution

Q. Evaluate 05(3e0.2x2x)dx \int_{0}^{5}\left(3 e^{0.2 x}-2 x\right) d x and express the answer in simplest form.\newlineAnswer:
  1. Identify Terms: Identify the two separate terms in the integral.\newlineWe have the integral of the sum of two functions: 3e0.2x3e^{0.2x} and 2x-2x. We can integrate each term separately.
  2. Integrate 3e0.2x3e^{0.2x}: Integrate the first term 3e0.2x3e^{0.2x}.\newlineTo integrate 3e0.2x3e^{0.2x}, we use the fact that the integral of eaxe^{ax} is (1/a)eax(1/a)e^{ax}, where aa is a constant.\newlineSo, the integral of 3e0.2x3e^{0.2x} is (3/0.2)e0.2x=15e0.2x(3/0.2)e^{0.2x} = 15e^{0.2x}.
  3. Integrate 2x-2x: Integrate the second term 2x-2x. The integral of 2x-2x with respect to xx is x2-x^2.
  4. Combine Integrals: Combine the integrals of the two terms.\newlineThe integral of the function 3e0.2x2x3e^{0.2x} - 2x is 15e0.2xx215e^{0.2x} - x^2.
  5. Evaluate Definite Integral: Evaluate the definite integral from 00 to 55. We need to calculate (15e0.2xx2)(15e^{0.2x} - x^2) evaluated at x=5x=5 and subtract the value of the function evaluated at x=0x=0. At x=5x=5: 15e0.2×552=15e12515e^{0.2\times 5} - 5^2 = 15e^1 - 25. At x=0x=0: 15e0.2×002=15e00=150=1515e^{0.2\times 0} - 0^2 = 15e^0 - 0 = 15 - 0 = 15.
  6. Subtract Values: Subtract the value at the lower limit from the value at the upper limit.\newline(15e125)(15)=15e2515=15e40(15e^1 - 25) - (15) = 15e - 25 - 15 = 15e - 40.

More problems from Evaluate definite integrals using the chain rule