Q. Evaluate ∫04(9e0.5x−2x)dx and express the answer in simplest form.Answer:
Evaluate Definite Integral: Now we evaluate the definite integral from 0 to 4.∫04(9e0.5x−2x)dx=[18e0.5x−x2]04We calculate the value of the antiderivative at the upper limit of integration (x = 4):18e0.5⋅4−42=18e2−16
Calculate Upper Limit: Next, we calculate the value of the antiderivative at the lower limit of integration (x = 0):18e0.5⋅0−02=18e0−0=18⋅1−0=18
Calculate Lower Limit: We subtract the value of the antiderivative at the lower limit from the value at the upper limit to find the definite integral:[18e2−16]−[18]18e2−16−1818e2−34
More problems from Evaluate definite integrals using the chain rule