Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate 
int_(0)^(4)(9e^(0.5 x)-2x)dx and express the answer in simplest form.
Answer:

Evaluate 04(9e0.5x2x)dx \int_{0}^{4}\left(9 e^{0.5 x}-2 x\right) d x and express the answer in simplest form.\newlineAnswer:

Full solution

Q. Evaluate 04(9e0.5x2x)dx \int_{0}^{4}\left(9 e^{0.5 x}-2 x\right) d x and express the answer in simplest form.\newlineAnswer:
  1. Evaluate Definite Integral: Now we evaluate the definite integral from 00 to 44.\newline04(9e0.5x2x)dx=[18e0.5xx2]04\int_{0}^{4}(9e^{0.5x}-2x)dx = [18e^{0.5x} - x^2]_{0}^{4}\newlineWe calculate the value of the antiderivative at the upper limit of integration (x = 44):\newline18e0.5442=18e21618e^{0.5 \cdot 4} - 4^2 = 18e^{2} - 16
  2. Calculate Upper Limit: Next, we calculate the value of the antiderivative at the lower limit of integration (x = 00):\newline18e0.5002=18e00=1810=1818e^{0.5 \cdot 0} - 0^2 = 18e^{0} - 0 = 18 \cdot 1 - 0 = 18
  3. Calculate Lower Limit: We subtract the value of the antiderivative at the lower limit from the value at the upper limit to find the definite integral:\newline[18e216][18][18e^{2} - 16] - [18]\newline18e2161818e^{2} - 16 - 18\newline18e23418e^{2} - 34

More problems from Evaluate definite integrals using the chain rule