Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate 
int_(0)^(4)(9e^(0.25 x)+4x)dx and express the answer in simplest form.
Answer:

Evaluate 04(9e0.25x+4x)dx \int_{0}^{4}\left(9 e^{0.25 x}+4 x\right) d x and express the answer in simplest form.\newlineAnswer:

Full solution

Q. Evaluate 04(9e0.25x+4x)dx \int_{0}^{4}\left(9 e^{0.25 x}+4 x\right) d x and express the answer in simplest form.\newlineAnswer:
  1. Identify Integral: Identify the integral to be solved.\newlineWe need to evaluate the integral of the function 9e0.25x+4x9e^{0.25x} + 4x with respect to xx from 00 to 44.
  2. Break into Two: Break the integral into two separate integrals.\newlineThe integral of a sum is the sum of the integrals, so we can write:\newline(9e0.25x+4x)dx=9e0.25xdx+4xdx\int(9e^{0.25x} + 4x)dx = \int 9e^{0.25x}dx + \int 4xdx
  3. Evaluate First Integral: Evaluate the first integral 9e(0.25x)dx\int 9e^{(0.25x)}dx. To integrate 9e(0.25x)9e^{(0.25x)}, we can use the substitution method: Let u=0.25xu = 0.25x, then du=0.25dxdu = 0.25dx, or dx=4dudx = 4du. The integral becomes: 9e(u)4du=36e(u)du\int 9e^{(u)} \cdot 4du = 36\int e^{(u)}du The integral of e(u)e^{(u)} is e(u)e^{(u)}, so we have: 36e(u)du=36e(u)+C36\int e^{(u)}du = 36e^{(u)} + C Substituting back for uu, we get: 9e(0.25x)9e^{(0.25x)}00
  4. Evaluate Second Integral: Evaluate the second integral 4xdx\int 4x \, dx. The integral of 4x4x with respect to xx is 2x22x^2, so we have: 4xdx=2x2+C\int 4x \, dx = 2x^2 + C
  5. Combine Results: Combine the results of the two integrals.\newlineThe combined indefinite integral is:\newline36e0.25x+2x2+C36e^{0.25x} + 2x^2 + C
  6. Evaluate Definite Integral: Evaluate the definite integral from 00 to 44. We need to calculate the value of the combined integral at the upper limit (x=4x=4) and subtract the value at the lower limit (x=0x=0). For x=4x=4: 36e(0.254)+242=36e1+216=36e+3236e^{(0.25\cdot4)} + 2\cdot4^2 = 36e^{1} + 2\cdot16 = 36e + 32 For x=0x=0: 36e(0.250)+202=36e0+0=3636e^{(0.25\cdot0)} + 2\cdot0^2 = 36e^{0} + 0 = 36 Now subtract the value at x=0x=0 from the value at x=4x=4: 4400
  7. Write Final Answer: Write the final answer.\newlineThe value of the definite integral from 00 to 44 is 36e436e - 4.

More problems from Evaluate definite integrals using the chain rule