Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate 
int_(0)^(4)(8e^(-0.5 x)-2x)dx and express the answer in simplest form.
Answer:

Evaluate 04(8e0.5x2x)dx \int_{0}^{4}\left(8 e^{-0.5 x}-2 x\right) d x and express the answer in simplest form.\newlineAnswer:

Full solution

Q. Evaluate 04(8e0.5x2x)dx \int_{0}^{4}\left(8 e^{-0.5 x}-2 x\right) d x and express the answer in simplest form.\newlineAnswer:
  1. Break down integral: Break down the integral into two separate integrals.\newlineWe have the integral of a sum of two functions, which can be separated into the sum of two integrals:\newline\int(\(8e^{0-0.55x} - 22x)\,dx = \int 88e^{0-0.55x}\,dx - \int 22x\,dx
  2. Evaluate first integral: Evaluate the first integral 8e0.5xdx\int 8e^{-0.5x}\,dx. To integrate 8e0.5x8e^{-0.5x}, we use the substitution method: Let u=0.5xu = -0.5x, then du=0.5dxdu = -0.5dx, which means dx=2dudx = -2du. The integral becomes: 8eu2du=16eudu\int 8e^u \cdot -2du = -16\int e^u \,du The integral of eue^u with respect to uu is eue^u, so we have: 16eu+C-16e^u + C Substitute back u=0.5xu = -0.5x to get: 8e0.5x8e^{-0.5x}11
  3. Evaluate second integral: Evaluate the second integral 2xdx\int 2x \, dx.\newlineThe integral of 2x2x with respect to xx is x2x^2, so we have:\newline2xdx=2(12)x2=x2+C\int 2x \, dx = 2 \cdot (\frac{1}{2})x^2 = x^2 + C
  4. Combine results: Combine the results from Step 22 and Step 33 to get the indefinite integral.\newlineThe indefinite integral is:\newline16e(0.5x)+x2+C-16e^{(-0.5x)} + x^2 + C
  5. Evaluate definite integral: Evaluate the definite integral from 00 to 44. We need to calculate the value of the indefinite integral at the upper limit (x=4)(x=4) and subtract the value at the lower limit (x=0)(x=0): (16e(0.54)+42)(16e(0.50)+02)(-16e^{(-0.5\cdot4)} + 4^2) - (-16e^{(-0.5\cdot0)} + 0^2) Simplify and calculate the values: (16e(2)+16)(16e(0)+0)(-16e^{(-2)} + 16) - (-16e^{(0)} + 0) (16/e2+16)(16+0)(-16/e^2 + 16) - (-16 + 0) 16/e2+16+16-16/e^2 + 16 + 16 16+1616/e216 + 16 - 16/e^2 3216/e232 - 16/e^2

More problems from Evaluate definite integrals using the chain rule