Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate 
int_(0)^(4)(5e^(-0.5 x)-2x)dx and express the answer in simplest form.
Answer:

Evaluate 04(5e0.5x2x)dx \int_{0}^{4}\left(5 e^{-0.5 x}-2 x\right) d x and express the answer in simplest form.\newlineAnswer:

Full solution

Q. Evaluate 04(5e0.5x2x)dx \int_{0}^{4}\left(5 e^{-0.5 x}-2 x\right) d x and express the answer in simplest form.\newlineAnswer:
  1. Substitution Method Integration: We need to evaluate the integral of the function 5e0.5x2x5e^{-0.5x} - 2x from 00 to 44. We will integrate each term separately.\newlineFirst, let's integrate 5e0.5x5e^{-0.5x}. We can use the substitution method for this part of the integral.\newlineLet u=0.5xu = -0.5x, which implies du=0.5dxdu = -0.5dx or dx=2dudx = -2du.\newlineThe integral of eue^u with respect to uu is eue^u.\newlineSo, the integral of 0000 is 0011.
  2. Integrating 2x-2x: Next, we integrate 2x-2x with respect to xx. The integral of xx with respect to xx is (1/2)x2(1/2)x^2.\newlineSo, the integral of 2xdx-2x \, dx is x2-x^2.
  3. Combining Integrals: Now we combine the two integrals to get the integral of the entire function: (5e(0.5x)2x)dx=10e(0.5x)x2+C\int(5e^{(-0.5x)} - 2x)dx = -10e^{(-0.5x)} - x^2 + C, where CC is the constant of integration.
  4. Evaluating Antiderivative: We evaluate this antiderivative from 00 to 44: [10e(0.5x)x2[-10e^{(-0.5x)} - x^2] evaluated from 00 to 44. This gives us: [10e(0.54)42[-10e^{(-0.5\cdot4)} - 4^2] - [\(-10e^{(0-0.55\cdot00)} - 00^22\]).
  5. Plugging in Values: Now we plug in the values and simplify:\newline[-10e^{-2} - 16\] - \[-10e^{0} - 0\]).\(\newlineWe know that \$e^{0} = 1\), so this simplifies to:\(\newline\)\([\(-10\)/e^{\(2\)} - \(16\)\] - \[-10 - 0\]).
  6. Final Answer: Simplifying further, we get:\(\newline\)\(-10/e^2 - 16 + 10\).
  7. Final Answer: Simplifying further, we get:\(\newline\)\(-10/e^2 - 16 + 10\).Finally, we combine like terms to get the final answer:\(\newline\)\(-10/e^2 - 6\).

More problems from Evaluate definite integrals using the power rule