Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate 
int_(0)^(4)(5e^(-0.25 x)-4x)dx and express the answer in simplest form.
Answer:

Evaluate 04(5e0.25x4x)dx \int_{0}^{4}\left(5 e^{-0.25 x}-4 x\right) d x and express the answer in simplest form.\newlineAnswer:

Full solution

Q. Evaluate 04(5e0.25x4x)dx \int_{0}^{4}\left(5 e^{-0.25 x}-4 x\right) d x and express the answer in simplest form.\newlineAnswer:
  1. Break down into two integrals: Break down the integral into two separate integrals.\newlineWe have the integral of a sum of two functions, which can be separated into the sum of two integrals:\newline\int(\(5e^{0-0.2525x} - 44x)\,dx = \int 55e^{0-0.2525x}\,dx - \int 44x\,dx
  2. Evaluate first integral: Evaluate the first integral 5e0.25xdx\int 5e^{-0.25x}\,dx. To integrate 5e0.25x5e^{-0.25x}, we can use the substitution method: Let u=0.25xu = -0.25x, then du=0.25dxdu = -0.25dx, which means dx=4dudx = -4du. The limits of integration also change with the substitution. When x=0x = 0, u=0u = 0, and when x=4x = 4, u=1u = -1. The integral becomes: 5eu(4du)=20eudu\int 5e^u(-4du) = -20\int e^u\,du The integral of 5e0.25x5e^{-0.25x}00 with respect to 5e0.25x5e^{-0.25x}11 is 5e0.25x5e^{-0.25x}00, so we have: 5e0.25x5e^{-0.25x}33 Substituting back for 5e0.25x5e^{-0.25x}11, we get: 5e0.25x5e^{-0.25x}55
  3. Evaluate second integral: Evaluate the second integral 4xdx\int 4x\,dx. The integral of 4x4x with respect to xx is 2x22x^2, so we have: 2x2+C2x^2 + C
  4. Combine results: Combine the results from Step 22 and Step 33.\newlineThe combined integral from 00 to 44 is:\newline20e(0.25x)+2x2-20e^{(-0.25x)} + 2x^2 evaluated from 00 to 44.
  5. Evaluate at upper limit: Evaluate the combined integral at the upper limit x=4x = 4.
    20e(0.254)+242-20e^{(-0.25\cdot 4)} + 2\cdot 4^2
    = 20e(1)+216-20e^{(-1)} + 2\cdot 16
    = 20e+32-\frac{20}{e} + 32
  6. Evaluate at lower limit: Evaluate the combined integral at the lower limit x=0x = 0.20e(0.250)+202=20e0+0=20-20e^{(-0.25\cdot 0)} + 2\cdot 0^2 = -20e^0 + 0 = -20
  7. Subtract values: Subtract the value of the integral at the lower limit from the value at the upper limit.\newline(20/e+32)(20)(-20/e + 32) - (-20)\newline=20/e+32+20= -20/e + 32 + 20\newline=20/e+52= -20/e + 52

More problems from Evaluate definite integrals using the chain rule