Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate 
int_(0)^(4)(2e^(-0.25 x)-4x)dx and express the answer in simplest form.
Answer:

Evaluate 04(2e0.25x4x)dx \int_{0}^{4}\left(2 e^{-0.25 x}-4 x\right) d x and express the answer in simplest form.\newlineAnswer:

Full solution

Q. Evaluate 04(2e0.25x4x)dx \int_{0}^{4}\left(2 e^{-0.25 x}-4 x\right) d x and express the answer in simplest form.\newlineAnswer:
  1. Break down integral: Break down the integral into two separate integrals.\newlineWe have the integral of a sum of two functions, which can be separated into the sum of two integrals:\newline\int(\(2e^{0-0.2525x} - 44x)\,dx = \int 22e^{0-0.2525x}\,dx - \int 44x\,dx
  2. Evaluate first integral: Evaluate the first integral 2e0.25xdx\int 2e^{-0.25x}\,dx. To integrate 2e0.25x2e^{-0.25x}, we use the substitution method: Let u=0.25xu = -0.25x, then du=0.25dxdu = -0.25dx, or dx=4dudx = -4du. The limits of integration also change with the substitution. When x=0x = 0, u=0u = 0, and when x=4x = 4, u=1u = -1. The integral becomes: 2eu4du=8eudu\int 2e^u \cdot -4du = -8\int e^u \,du The integral of 2e0.25x2e^{-0.25x}00 with respect to 2e0.25x2e^{-0.25x}11 is 2e0.25x2e^{-0.25x}00, so we have: 2e0.25x2e^{-0.25x}33 Substituting back for 2e0.25x2e^{-0.25x}11, we get: 2e0.25x2e^{-0.25x}55
  3. Evaluate second integral: Evaluate the second integral 4xdx\int 4x\,dx. The integral of 4x4x with respect to xx is 2x22x^2, so we have: 2x2+C2x^2 + C
  4. Combine results: Combine the results of the two integrals.\newlineThe combined indefinite integral is:\newline8e(0.25x)+2x2+C-8e^{(-0.25x)} + 2x^2 + C
  5. Evaluate definite integral: Evaluate the definite integral from 00 to 44. We need to calculate the value of the combined integral at the upper limit (x=4x = 4) and subtract the value at the lower limit (x=0x = 0): [8e(0.254)+242][8e(0.250)+202][-8e^{(-0.25\cdot4)} + 2\cdot4^2] - [-8e^{(-0.25\cdot0)} + 2\cdot0^2] Calculating the values, we get: [8e(1)+216][8e(0)+0][-8e^{(-1)} + 2\cdot16] - [-8e^{(0)} + 0] [8e+32][81][-\frac{8}{e} + 32] - [-8\cdot1] 8e+32+8-\frac{8}{e} + 32 + 8
  6. Simplify final result: Simplify the final result.\newlineCombining the terms, we get:\newline32+88e32 + 8 - \frac{8}{e}\newline32+8(11e)32 + 8(1 - \frac{1}{e})\newline408e40 - \frac{8}{e}

More problems from Evaluate definite integrals using the chain rule