Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate 
int_(0)^(30)(2e^(-0.2 x)-1)dx and express the answer in simplest form.
Answer:

Evaluate 030(2e0.2x1)dx \int_{0}^{30}\left(2 e^{-0.2 x}-1\right) d x and express the answer in simplest form.\newlineAnswer:

Full solution

Q. Evaluate 030(2e0.2x1)dx \int_{0}^{30}\left(2 e^{-0.2 x}-1\right) d x and express the answer in simplest form.\newlineAnswer:
  1. Break down the integral: Break down the integral into two separate integrals. \int_{\(0\)}^{\(30\)}(\(2e^{0-0.22x} - 11)\,dx = \int_{00}^{3030}22e^{0-0.22x}\,dx - \int_{00}^{3030}11\,dx
  2. Evaluate first integral: Evaluate the first integral 0302e0.2xdx\int_{0}^{30} 2e^{-0.2x}dx. Let u=0.2xu = -0.2x, then du=0.2dxdu = -0.2dx, which implies dx=5dudx = -5du. The limits of integration change from x=0x = 0 to x=30x = 30 to u=0u = 0 to u=6u = -6. The integral becomes 10×06eudu-10 \times \int_{0}^{-6}e^{u} du.
  3. Evaluate integral of eue^u: Evaluate the integral of eue^u.
    eudu=eu+C\int e^u du = e^u + C
    So, 10×06eudu=10×(e6e0)-10 \times \int_{0}^{-6}e^u du = -10 \times (e^{-6} - e^{0})
  4. Evaluate second integral: Evaluate the second integral 0301dx\int_{0}^{30} 1 \, dx. This is a simple integral, which results in xx evaluated from 00 to 3030. 0301dx=300=30\int_{0}^{30} 1 \, dx = 30 - 0 = 30
  5. Combine results: Combine the results from Step 33 and Step 44.\newline10×(e6e0)30-10 \times (e^{-6} - e^{0}) - 30\newlineSimplify the expression.\newline10×(e61)30-10 \times (e^{-6} - 1) - 30
  6. Calculate exact value: Calculate the exact value of the expression.\newline10×(1/e61)30-10 \times (1/e^{6} - 1) - 30\newline= 10×(1/e61)30-10 \times (1/e^{6} - 1) - 30\newline= 10/e6+1030-10/e^{6} + 10 - 30\newline= 10/e620-10/e^{6} - 20

More problems from Evaluate definite integrals using the chain rule