Q. Evaluate ∫030(2e−0.2x−1)dx and express the answer in simplest form.Answer:
Break down the integral: Break down the integral into two separate integrals. \int_{\(0\)}^{\(30\)}(\(2e^{−0.2x} - 1)\,dx = \int_{0}^{30}2e^{−0.2x}\,dx - \int_{0}^{30}1\,dx
Evaluate first integral: Evaluate the first integral ∫0302e−0.2xdx. Let u=−0.2x, then du=−0.2dx, which implies dx=−5du. The limits of integration change from x=0 to x=30 to u=0 to u=−6. The integral becomes −10×∫0−6eudu.
Evaluate integral of eu: Evaluate the integral of eu. ∫eudu=eu+C So, −10×∫0−6eudu=−10×(e−6−e0)
Evaluate second integral: Evaluate the second integral ∫0301dx. This is a simple integral, which results in x evaluated from 0 to 30. ∫0301dx=30−0=30
Combine results: Combine the results from Step 3 and Step 4.−10×(e−6−e0)−30Simplify the expression.−10×(e−6−1)−30
Calculate exact value: Calculate the exact value of the expression.−10×(1/e6−1)−30= −10×(1/e6−1)−30= −10/e6+10−30= −10/e6−20
More problems from Evaluate definite integrals using the chain rule