Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate 
int_(0)^(20)(9e^(0.2 x)+2)dx and express the answer in simplest form.
Answer:

Evaluate 020(9e0.2x+2)dx \int_{0}^{20}\left(9 e^{0.2 x}+2\right) d x and express the answer in simplest form.\newlineAnswer:

Full solution

Q. Evaluate 020(9e0.2x+2)dx \int_{0}^{20}\left(9 e^{0.2 x}+2\right) d x and express the answer in simplest form.\newlineAnswer:
  1. Identify Integral: Identify the integral to be solved.\newlineWe need to evaluate the integral of the function 9e0.2x+29e^{0.2x} + 2 with respect to xx from 00 to 2020.
  2. Break into Two: Break the integral into two separate integrals.\newlineThe integral of a sum is the sum of the integrals, so we can write:\newline\int(\(9e^{00.22x} + 22)\,dx = \int 99e^{00.22x}\,dx + \int 22\,dx
  3. Evaluate First Integral: Evaluate the first integral 9e(0.2x)dx\int 9e^{(0.2x)}\,dx. To integrate 9e(0.2x)9e^{(0.2x)}, we can use the fact that the integral of e(ax)e^{(ax)} is (1/a)e(ax)(1/a)e^{(ax)}, where aa is a constant. So, 9e(0.2x)dx=(9/0.2)e(0.2x)=45e(0.2x)\int 9e^{(0.2x)}\,dx = (9/0.2)e^{(0.2x)} = 45e^{(0.2x)}
  4. Evaluate Second Integral: Evaluate the second integral 2dx\int 2\,dx. The integral of a constant is just the constant times the variable of integration, so: 2dx=2x\int 2\,dx = 2x
  5. Combine Results: Combine the results of the two integrals.\newlineThe combined indefinite integral is:\newline45e0.2x+2x+C45e^{0.2x} + 2x + C, where CC is the constant of integration.
  6. Evaluate Definite Integral: Evaluate the definite integral from 00 to 2020. We need to calculate (45e0.2x+2x)(45e^{0.2x} + 2x) evaluated at x=20x=20 and subtract the value of the expression evaluated at x=0x=0. F(20)=45e0.2×20+2×20F(20) = 45e^{0.2\times 20} + 2\times 20 F(0)=45e0.2×0+2×0F(0) = 45e^{0.2\times 0} + 2\times 0
  7. Perform Calculations: Perform the calculations for F(20)F(20) and F(0)F(0).\newlineF(20)=45e4+40F(20) = 45e^{4} + 40\newlineF(0)=45e0+0=45×1+0=45F(0) = 45e^{0} + 0 = 45\times 1 + 0 = 45
  8. Subtract F(0)F(0): Subtract F(0)F(0) from F(20)F(20) to get the value of the definite integral.\newline020(9e0.2x+2)dx=F(20)F(0)\int_{0}^{20}(9e^{0.2x} + 2)dx = F(20) - F(0)\newline=(45e4+40)45= (45e^{4} + 40) - 45
  9. Simplify Final Answer: Simplify the expression to get the final answer.\newline020(9e0.2x+2)dx=45e4+4045\int_{0}^{20}(9e^{0.2x} + 2)dx = 45e^{4} + 40 - 45\newline=45e45= 45e^{4} - 5

More problems from Evaluate definite integrals using the chain rule