Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate 
int_(0)^(2)(9e^(-0.5 x)-4x)dx and express the answer in simplest form.
Answer:

Evaluate 02(9e0.5x4x)dx \int_{0}^{2}\left(9 e^{-0.5 x}-4 x\right) d x and express the answer in simplest form.\newlineAnswer:

Full solution

Q. Evaluate 02(9e0.5x4x)dx \int_{0}^{2}\left(9 e^{-0.5 x}-4 x\right) d x and express the answer in simplest form.\newlineAnswer:
  1. Break down into two integrals: Break down the integral into two separate integrals. 02(9e0.5x4x)dx=029e0.5xdx024xdx\int_{0}^{2}(9e^{-0.5x} - 4x)dx = \int_{0}^{2}9e^{-0.5x}dx - \int_{0}^{2}4xdx
  2. Evaluate integral of 9e0.5x9e^{-0.5x}: Evaluate the first integral 029e0.5xdx\int_{0}^{2}9e^{-0.5x}\,dx. Let u=0.5xu = -0.5x, then du=0.5dxdu = -0.5dx, which implies dx=2dudx = -2du. When x=0x = 0, u=0u = 0, and when x=2x = 2, u=1u = -1. The integral becomes 1801eudu-18 \int_{0}^{-1}e^{u} \,du.
  3. Calculate integral of eue^u: Calculate the integral of eue^u. The integral of eue^u with respect to uu is eue^u. So, 1801eudu=18[eu]01=18(e1e0)=18(1e1)-18 \int_{0}^{-1}e^u du = -18[e^u]_{0}^{-1} = -18(e^{-1} - e^{0}) = -18(\frac{1}{e} - 1).
  4. Evaluate integral of 4x4x: Evaluate the second integral 024xdx\int_{0}^{2}4x\,dx. The integral of xx with respect to xx is (1/2)x2(1/2)x^2. So, 024xdx=4[(1/2)x2]02=4(1/2)(2202)=4(2)=8\int_{0}^{2}4x\,dx = 4[(1/2)x^2]_{0}^{2} = 4(1/2)(2^2 - 0^2) = 4(2) = 8.
  5. Combine results from Step 33 and Step 44: Combine the results from Step 33 and Step 44.\newlineThe result of the integral from 00 to 22 of the function 9e0.5x4x9e^{-0.5x} - 4x is:\newline18(1/e1)8-18(1/e - 1) - 8.
  6. Simplify the expression: Simplify the expression.\newline18(1e1)8=18e+188=1018e-18(\frac{1}{e} - 1) - 8 = -\frac{18}{e} + 18 - 8 = 10 - \frac{18}{e}.

More problems from Evaluate definite integrals using the chain rule