Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate 
int_(0)^(2)(6e^(-0.5 x)-4x)dx and express the answer in simplest form.
Answer:

Evaluate 02(6e0.5x4x)dx \int_{0}^{2}\left(6 e^{-0.5 x}-4 x\right) d x and express the answer in simplest form.\newlineAnswer:

Full solution

Q. Evaluate 02(6e0.5x4x)dx \int_{0}^{2}\left(6 e^{-0.5 x}-4 x\right) d x and express the answer in simplest form.\newlineAnswer:
  1. Break down into two integrals: Break down the integral into two separate integrals. 02(6e0.5x4x)dx=026e0.5xdx024xdx\int_{0}^{2}(6e^{-0.5x} - 4x)dx = \int_{0}^{2}6e^{-0.5x}dx - \int_{0}^{2}4xdx
  2. Evaluate integral of 6e0.5x6e^{-0.5x}: Evaluate the first integral 026e0.5xdx\int_{0}^{2}6e^{-0.5x}\,dx. Let u=0.5xu = -0.5x, then du=0.5dxdu = -0.5dx, which implies dx=2dudx = -2du. When x=0x = 0, u=0u = 0, and when x=2x = 2, u=1u = -1. The integral becomes 1201eudu-12 \int_{0}^{-1}e^{u} \,du.
  3. Calculate integral of eue^u: Calculate the integral of eue^u. The integral of eue^u with respect to uu is eue^u. So, 1201eudu=12[eu]01=12(e1e0)=12(1e1)-12 \int_{0}^{-1}e^u du = -12[e^u]_{0}^{-1} = -12(e^{-1} - e^{0}) = -12(\frac{1}{e} - 1).
  4. Evaluate integral of 4x4x: Evaluate the second integral 024xdx\int_{0}^{2}4x\,dx. The integral of xx with respect to xx is (1/2)x2(1/2)x^2. So, 024xdx=4[(1/2)x2]02=4(1/2)(2)24(1/2)(0)2=4(2)0=8\int_{0}^{2}4x\,dx = 4[(1/2)x^2]_{0}^{2} = 4(1/2)(2)^2 - 4(1/2)(0)^2 = 4(2) - 0 = 8.
  5. Combine results from Step 33 and Step 44: Combine the results from Step 33 and Step 44. The result of the integral from 00 to 22 of the function 6e0.5x4x6e^{-0.5x} - 4x is 12(1/e1)+8-12(1/e - 1) + 8.
  6. Simplify the expression: Simplify the expression. \newline12(1e1)+8=12e+12+8=12e+20-12(\frac{1}{e} - 1) + 8 = \frac{-12}{e} + 12 + 8 = \frac{-12}{e} + 20.

More problems from Evaluate definite integrals using the power rule