Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate 
int_(0)^(2)(2e^(0.5 x)-2x)dx and express the answer in simplest form.
Answer:

Evaluate 02(2e0.5x2x)dx \int_{0}^{2}\left(2 e^{0.5 x}-2 x\right) d x and express the answer in simplest form.\newlineAnswer:

Full solution

Q. Evaluate 02(2e0.5x2x)dx \int_{0}^{2}\left(2 e^{0.5 x}-2 x\right) d x and express the answer in simplest form.\newlineAnswer:
  1. Identify Integral: Identify the integral to be solved.\newlineWe need to evaluate the integral of the function 2e0.5x2x2e^{0.5x} - 2x from 00 to 22. This integral can be split into two separate integrals:\newline02(2e0.5x2x)dx=022e0.5xdx022xdx\int_{0}^{2}(2e^{0.5x} - 2x)\,dx = \int_{0}^{2}2e^{0.5x}\,dx - \int_{0}^{2}2x\,dx
  2. Evaluate First Integral: Evaluate the first integral.\newlineThe first integral is 022e0.5xdx\int_{0}^{2} 2e^{0.5x}dx. To solve this, we can use the substitution method or recognize that the antiderivative of eaxe^{ax} is (1/a)eax(1/a)e^{ax}. Here, a=0.5a = 0.5, so the antiderivative is (1/0.5)e0.5x=2e0.5x(1/0.5)e^{0.5x} = 2e^{0.5x}. Therefore, the integral becomes:\newline022e0.5xdx=[2e0.5x]\int_{0}^{2}2e^{0.5x}dx = [2e^{0.5x}] from 00 to 22\newlineEvaluating this at the bounds gives us:\newline=2e0.5×22e0.5×0= 2e^{0.5\times 2} - 2e^{0.5\times 0}\newline=2e12e0= 2e^1 - 2e^0\newlineeaxe^{ax}00
  3. Evaluate Second Integral: Evaluate the second integral.\newlineThe second integral is 022xdx\int_{0}^{2} 2x \, dx. The antiderivative of xx is (1/2)x2(1/2)x^2, so the antiderivative of 2x2x is 2×(1/2)x2=x22\times(1/2)x^2 = x^2. Therefore, the integral becomes:\newline022xdx=[x2]\int_{0}^{2}2x\,dx = [x^2] from 00 to 22\newlineEvaluating this at the bounds gives us:\newline= 22022^2 - 0^2\newline= 404 - 0\newline= xx00
  4. Combine Results: Combine the results from Step 22 and Step 33.\newlineNow we combine the results of the two integrals to get the final answer:\newline(2e2)4(2e - 2) - 4\newline=2e24= 2e - 2 - 4\newline=2e6= 2e - 6

More problems from Evaluate definite integrals using the chain rule