Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate 
int_(0)^(2)(10e^(-0.5 x)+2x)dx and express the answer in simplest form.
Answer:

Evaluate 02(10e0.5x+2x)dx \int_{0}^{2}\left(10 e^{-0.5 x}+2 x\right) d x and express the answer in simplest form.\newlineAnswer:

Full solution

Q. Evaluate 02(10e0.5x+2x)dx \int_{0}^{2}\left(10 e^{-0.5 x}+2 x\right) d x and express the answer in simplest form.\newlineAnswer:
  1. Identify Terms: Identify the two separate terms in the integral.\newlineWe have the integral of two terms: 10e(0.5x)10e^{(-0.5x)} and 2x2x. We will integrate each term separately.
  2. Integrate First Term: Integrate the first term 10e0.5x10e^{-0.5x}. The integral of eaxe^{ax} with respect to xx is (1/a)eax(1/a)e^{ax}, so the integral of 10e0.5x10e^{-0.5x} is 20e0.5x-20e^{-0.5x}. Calculation: 10e0.5xdx=20e0.5x+C\int 10e^{-0.5x}dx = -20e^{-0.5x} + C
  3. Integrate Second Term: Integrate the second term 2x2x. The integral of xx with respect to xx is (1/2)x2(1/2)x^2, so the integral of 2x2x is x2x^2. Calculation: 2xdx=x2+C\int 2x\,dx = x^2 + C
  4. Combine Integrals: Combine the results of the two integrals.\newlineThe combined indefinite integral is 20e(0.5x)+x2+C-20e^{(-0.5x)} + x^2 + C.
  5. Evaluate Definite Integral: Evaluate the definite integral from 00 to 22. We need to calculate (20e0.5x+x2)(-20e^{-0.5x} + x^2) evaluated at x=2x=2 and subtract the value of the function evaluated at x=0x=0. Calculation: [(20e0.52+22)(20e0.50+02)][(-20e^{-0.5\cdot 2} + 2^2) - (-20e^{-0.5\cdot 0} + 0^2)]
  6. Perform Evaluation: Perform the evaluation and simplification.\newlineCalculation: [(-20e^{-1} + 4) - (-20e^{0} + 0)]\(\newlineCalculation: \$[(-20/e + 4) - (-20\cdot 1 + 0)]\(\newline\)Calculation: \$[-20/e + 4 + 20]\(\newline\)Calculation: \$24 - 20/e\)
  7. Write Final Answer: Write the final answer in simplest form.\(\newline\)The final answer is \(24 - \frac{20}{e}\).

More problems from Evaluate definite integrals using the chain rule