Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate 
int_(0)^(16)(5e^(-0.25 x)-3)dx and express the answer in simplest form.
Answer:

Evaluate 016(5e0.25x3)dx \int_{0}^{16}\left(5 e^{-0.25 x}-3\right) d x and express the answer in simplest form.\newlineAnswer:

Full solution

Q. Evaluate 016(5e0.25x3)dx \int_{0}^{16}\left(5 e^{-0.25 x}-3\right) d x and express the answer in simplest form.\newlineAnswer:
  1. Break down into two integrals: Break down the integral into two separate integrals. 016(5e0.25x3)dx=0165e0.25xdx0163dx\int_{0}^{16}(5e^{-0.25x} - 3)dx = \int_{0}^{16}5e^{-0.25x}dx - \int_{0}^{16}3dx
  2. Evaluate first integral: Evaluate the first integral 0165e0.25xdx\int_{0}^{16}5e^{-0.25x}\,dx. Let u=0.25xu = -0.25x, then du=0.25dxdu = -0.25dx, which implies dx=4dudx = -4du. The limits of integration change from x=0x = 0 to x=16x = 16 to u=0u = 0 to u=4u = -4. The integral becomes 20×04eudu-20 \times \int_{0}^{-4}e^{u} \,du.
  3. Evaluate integral of eue^u: Evaluate the integral of eue^u.
    eudu=eu+C\int e^u \, du = e^u + C
    So, 20×04eudu=20×(e4e0)-20 \times \int_{0}^{-4}e^u \, du = -20 \times (e^{-4} - e^{0})
  4. Evaluate second integral: Evaluate the second integral 0163dx\int_{0}^{16} 3 \, dx. This is a simple integral, and the result is 3x3x evaluated from 00 to 1616. So, 0163dx=3×163×0=48\int_{0}^{16} 3 \, dx = 3 \times 16 - 3 \times 0 = 48.
  5. Combine results: Combine the results from Step 33 and Step 44.\newline20×(e4e0)+48=20×(e41)+48-20 \times (e^{-4} - e^{0}) + 48 = -20 \times (e^{-4} - 1) + 48
  6. Simplify expression: Simplify the expression.\newline20(e41)+48=20(1e41)+48-20 * (e^{-4} - 1) + 48 = -20 * (\frac{1}{e^{4}} - 1) + 48\newline=20e4+20+48= \frac{-20}{e^{4}} + 20 + 48\newline=6820e4= 68 - \frac{20}{e^{4}}

More problems from Evaluate definite integrals using the power rule