Q. Evaluate ∫016(5e−0.25x−3)dx and express the answer in simplest form.Answer:
Break down into two integrals: Break down the integral into two separate integrals. ∫016(5e−0.25x−3)dx=∫0165e−0.25xdx−∫0163dx
Evaluate first integral: Evaluate the first integral ∫0165e−0.25xdx. Let u=−0.25x, then du=−0.25dx, which implies dx=−4du. The limits of integration change from x=0 to x=16 to u=0 to u=−4. The integral becomes −20×∫0−4eudu.
Evaluate integral of eu: Evaluate the integral of eu. ∫eudu=eu+C So, −20×∫0−4eudu=−20×(e−4−e0)
Evaluate second integral: Evaluate the second integral ∫0163dx. This is a simple integral, and the result is 3x evaluated from 0 to 16. So, ∫0163dx=3×16−3×0=48.
Combine results: Combine the results from Step 3 and Step 4.−20×(e−4−e0)+48=−20×(e−4−1)+48
Simplify expression: Simplify the expression.−20∗(e−4−1)+48=−20∗(e41−1)+48=e4−20+20+48=68−e420
More problems from Evaluate definite integrals using the power rule