Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate 
int_(0)^(15)(9e^(-0.2 x)-1)dx and express the answer in simplest form.
Answer:

Evaluate 015(9e0.2x1)dx \int_{0}^{15}\left(9 e^{-0.2 x}-1\right) d x and express the answer in simplest form.\newlineAnswer:

Full solution

Q. Evaluate 015(9e0.2x1)dx \int_{0}^{15}\left(9 e^{-0.2 x}-1\right) d x and express the answer in simplest form.\newlineAnswer:
  1. Identify integral: Identify the integral to be solved.\newlineWe need to evaluate the integral of the function 9e0.2x19e^{-0.2x} - 1 from 00 to 1515. This can be written as:\newline015(9e0.2x1)dx\int_{0}^{15} (9e^{-0.2x} - 1) \, dx
  2. Break into two: Break the integral into two separate integrals.\newlineThe integral of a sum is the sum of the integrals, so we can write:\newline0159e0.2xdx0151dx\int_{0}^{15} 9e^{-0.2x} \, dx - \int_{0}^{15} 1 \, dx
  3. Evaluate first integral: Evaluate the first integral.\newlineThe integral of 9e0.2x9e^{-0.2x} with respect to xx is:\newline9e0.2xdx=45e0.2x+C\int 9e^{-0.2x} dx = -45e^{-0.2x} + C\newlineWe will evaluate this from 00 to 1515 in the next steps.
  4. Evaluate second integral: Evaluate the second integral.\newlineThe integral of 11 with respect to xx is:\newline1dx=x+C\int 1 \, dx = x + C\newlineWe will evaluate this from 00 to 1515 in the next steps.
  5. Apply Fundamental Theorem: Apply the Fundamental Theorem of Calculus to the first integral.\newlineWe need to evaluate 45e(0.2x)-45e^{(-0.2x)} from 00 to 1515:\newline45e(0.2×15)+45e(0.2×0)-45e^{(-0.2 \times 15)} + 45e^{(-0.2 \times 0)}
  6. Calculate first integral values: Calculate the values for the first integral.\newline45e3+45e0-45e^{-3} + 45e^{0}\newlineSince e0=1e^{0} = 1, this simplifies to:\newline45e3+45-45e^{-3} + 45
  7. Apply Fundamental Theorem: Apply the Fundamental Theorem of Calculus to the second integral.\newlineWe need to evaluate xx from 00 to 1515:\newline15015 - 0\newlineThis simplifies to 1515.
  8. Combine results: Combine the results from the two integrals.\newlineNow we combine the results from steps 66 and 77:\newline(45e3+45)15(-45e^{-3} + 45) - 15
  9. Simplify expression: Simplify the expression.\newlineSimplify the expression to get the final answer:\newline45e3+4515-45e^{-3} + 45 - 15\newline45e3+30-45e^{-3} + 30

More problems from Evaluate definite integrals using the chain rule