Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate 
int_(0)^(10)(3e^(0.2 x)+4)dx and express the answer in simplest form.
Answer:

Evaluate 010(3e0.2x+4)dx \int_{0}^{10}\left(3 e^{0.2 x}+4\right) d x and express the answer in simplest form.\newlineAnswer:

Full solution

Q. Evaluate 010(3e0.2x+4)dx \int_{0}^{10}\left(3 e^{0.2 x}+4\right) d x and express the answer in simplest form.\newlineAnswer:
  1. Identify Integral: Identify the integral to be solved.\newlineWe need to evaluate the integral of the function 3e0.2x+43e^{0.2x} + 4 with respect to xx, from the lower limit of 00 to the upper limit of 1010.
  2. Break into Two: Break the integral into two separate integrals.\newlineThe integral of a sum is the sum of the integrals, so we can write:\newline\int(\(3e^{00.22x} + 44)\,dx = \int 33e^{00.22x}\,dx + \int 44\,dx
  3. Evaluate First Integral: Evaluate the first integral 3e(0.2x)dx\int 3e^{(0.2x)}\,dx. To integrate 3e(0.2x)3e^{(0.2x)}, we recognize that the derivative of 0.2x0.2x is 0.20.2, so we need to divide by 0.20.2 to compensate for the chain rule when taking the antiderivative: \int \(3e^{(00.22x)}\,dx = \left(\frac{33}{00.22}\right)\int e^{(00.22x)}(00.22\,dx) = 1515\int e^{(00.22x)}\,d(00.22x) = 1515e^{(00.22x)} + C
  4. Evaluate Second Integral: Evaluate the second integral 4dx\int 4 \, dx. The antiderivative of a constant is just the constant times the variable of integration: 4dx=4x+C\int 4 \, dx = 4x + C
  5. Combine Results: Combine the results of Step 33 and Step 44.\newlineThe combined indefinite integral is:\newline15e0.2x+4x+C15e^{0.2x} + 4x + C
  6. Apply Fundamental Theorem: Apply the Fundamental Theorem of Calculus to evaluate the definite integral from 00 to 1010. We need to evaluate the combined expression at the upper limit of 1010 and subtract the evaluation at the lower limit of 00: (15e(0.210)+410)(15e(0.20)+40)(15e^{(0.2\cdot 10)} + 4\cdot 10) - (15e^{(0.2\cdot 0)} + 4\cdot 0)
  7. Perform Calculations: Perform the calculations for the upper and lower limits.\newlineFor the upper limit x=10x=10:\newline15e(0.210)+410=15e2+4015e^{(0.2\cdot 10)} + 4\cdot 10 = 15e^2 + 40\newlineFor the lower limit x=0x=0:\newline15e(0.20)+40=15e0+0=151+0=1515e^{(0.2\cdot 0)} + 4\cdot 0 = 15e^0 + 0 = 15\cdot 1 + 0 = 15
  8. Subtract Lower Limit: Subtract the lower limit evaluation from the upper limit evaluation.\newline(15e2+40)15=15e2+4015=15e2+25(15e^2 + 40) - 15 = 15e^2 + 40 - 15 = 15e^2 + 25
  9. Simplify Final Answer: Simplify the final answer.\newlineThe final answer is 15e2+2515e^2 + 25.

More problems from Evaluate definite integrals using the chain rule