Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve the Definite integral 

int_(2)^(3)[8x^(3)+3x^(2)+6x]

Solve the Definite integral \newline23[8x3+3x2+6x] \int_{2}^{3}\left[8 x^{3}+3 x^{2}+6 x\right]

Full solution

Q. Solve the Definite integral \newline23[8x3+3x2+6x] \int_{2}^{3}\left[8 x^{3}+3 x^{2}+6 x\right]
  1. Set up integral: Set up the integral for the given function.\newlineWe need to evaluate the definite integral of the function 8x3+3x2+6x8x^3 + 3x^2 + 6x from x=2x = 2 to x=3x = 3.\newlineThe integral is written as:\newlinex=2x=3(8x3+3x2+6x)dx\int_{x=2}^{x=3} (8x^3 + 3x^2 + 6x) \, dx
  2. Apply power rule: Apply the power rule for integration to each term of the function.\newlineThe power rule states that the integral of xnx^n is (x(n+1))/(n+1)(x^{(n+1)})/(n+1) for any real number nn that is not equal to 1-1.\newlineUsing this rule, we find the antiderivative of each term:\newline8x3dx=8(x(3+1))/(3+1)=8(x4)/4=2x4\int 8x^3 \, dx = 8 \cdot (x^{(3+1)})/(3+1) = 8 \cdot (x^4)/4 = 2x^4\newline3x2dx=3(x(2+1))/(2+1)=3(x3)/3=x3\int 3x^2 \, dx = 3 \cdot (x^{(2+1)})/(2+1) = 3 \cdot (x^3)/3 = x^3\newline6xdx=6(x(1+1))/(1+1)=6(x2)/2=3x2\int 6x \, dx = 6 \cdot (x^{(1+1)})/(1+1) = 6 \cdot (x^2)/2 = 3x^2
  3. Combine antiderivatives: Combine the antiderivatives to get the indefinite integral.\newlineThe indefinite integral of the function is the sum of the antiderivatives of its terms:\newline(8x3+3x2+6x)dx=2x4+x3+3x2+C\int(8x^3 + 3x^2 + 6x) \, dx = 2x^4 + x^3 + 3x^2 + C\newlinewhere CC is the constant of integration.
  4. Evaluate indefinite integral: Evaluate the indefinite integral from x=2x = 2 to x=3x = 3. To find the definite integral, we substitute the upper and lower limits of integration into the indefinite integral and subtract: (2(3)4+(3)3+3(3)2)(2(2)4+(2)3+3(2)2)=(2(81)+27+3(9))(2(16)+8+3(4))=(162+27+27)(32+8+12)=21652(2(3)^4 + (3)^3 + 3(3)^2) - (2(2)^4 + (2)^3 + 3(2)^2) = (2(81) + 27 + 3(9)) - (2(16) + 8 + 3(4)) = (162 + 27 + 27) - (32 + 8 + 12) = 216 - 52
  5. Perform final calculation: Perform the final calculation to obtain the value of the definite integral. 21652=164216 - 52 = 164

More problems from Evaluate definite integrals using the chain rule