Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Calculate the integral and write your answer in simplest form.

int(5root(4)(x^(5)))/(6)dx
Answer:

Calculate the integral and write your answer in simplest form.\newline5x546dx \int \frac{5 \sqrt[4]{x^{5}}}{6} \mathrm{dx} \newlineAnswer:

Full solution

Q. Calculate the integral and write your answer in simplest form.\newline5x546dx \int \frac{5 \sqrt[4]{x^{5}}}{6} \mathrm{dx} \newlineAnswer:
  1. Rewrite in Exponents: We are given the integral to solve:\newline5x546dx \int \frac{5\sqrt[4]{x^5}}{6} \, dx \newlineFirst, we rewrite the integral in terms of exponents to simplify the integration process.\newlinex54=x5/4 \sqrt[4]{x^5} = x^{5/4} \newlineSo the integral becomes:\newline5x5/46dx \int \frac{5x^{5/4}}{6} \, dx
  2. Pull Out Constant Factor: Now we can pull out the constant factor from the integral:\newline56x5/4dx \frac{5}{6} \int x^{5/4} \, dx
  3. Apply Power Rule: Next, we apply the power rule for integration, which states that:\newlinexndx=xn+1n+1+C \int x^n \, dx = \frac{x^{n+1}}{n+1} + C \newlinewhere n1 n \neq -1 and C C is the constant of integration. For our integral, n=5/4 n = 5/4 , so we get:\newline56x5/4dx=56x(5/4)+1(5/4)+1+C \frac{5}{6} \int x^{5/4} \, dx = \frac{5}{6} \cdot \frac{x^{(5/4)+1}}{(5/4)+1} + C
  4. Simplify Exponent and Fraction: We simplify the exponent and the fraction:\newline(5/4)+1=5/4+4/4=9/4 (5/4) + 1 = 5/4 + 4/4 = 9/4 \newlineSo the integral becomes:\newline56x9/49/4+C \frac{5}{6} \cdot \frac{x^{9/4}}{9/4} + C
  5. Multiply by Reciprocal: To simplify the fraction, we multiply by the reciprocal of 9/4 9/4 :\newline5649x9/4+C \frac{5}{6} \cdot \frac{4}{9} \cdot x^{9/4} + C
  6. Multiply Constants: Now we multiply the constants:\newline5469x9/4+C=2054x9/4+C \frac{5 \cdot 4}{6 \cdot 9} \cdot x^{9/4} + C = \frac{20}{54} \cdot x^{9/4} + C
  7. Simplify Fraction: We can simplify the fraction 2054 \frac{20}{54} by dividing both the numerator and the denominator by their greatest common divisor, which is 22:\newline2054=1027 \frac{20}{54} = \frac{10}{27} \newlineSo the integral simplifies to:\newline1027x9/4+C \frac{10}{27} \cdot x^{9/4} + C

More problems from Evaluate definite integrals using the power rule