Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Calculate the integral and write the answer in simplest form.

int(-6x^(-3)+2x)dx
Answer:

Calculate the integral and write the answer in simplest form.\newline(6x3+2x)dx \int\left(-6 x^{-3}+2 x\right) d x \newlineAnswer:

Full solution

Q. Calculate the integral and write the answer in simplest form.\newline(6x3+2x)dx \int\left(-6 x^{-3}+2 x\right) d x \newlineAnswer:
  1. Identify Integral: Identify the integral to be solved.\newlineWe need to integrate the function 6x3+2x-6x^{-3} + 2x with respect to xx.
  2. Break Down Integral: Break down the integral into two separate integrals.\newlineThe integral of a sum of functions is the sum of the integrals of each function, so we can write:\newline\int(\(-6x^{3-3} + 22x)\,dx = \int(6-6x^{3-3})\,dx + \int(22x)\,dx
  3. Integrate First Part: Integrate the first part of the function, 6x3-6x^{-3}. The integral of xnx^n with respect to xx is (xn+1)/(n+1)+C(x^{n+1})/(n+1) + C, where n1n \neq -1. Applying this rule: (6x3)dx=6(x3)dx=6(x3+1/(3+1))+C=6(x2/(2))+C=3x2+C1\int(-6x^{-3})dx = -6 \cdot \int(x^{-3})dx = -6 \cdot (x^{-3+1}/(-3+1)) + C = -6 \cdot (x^{-2}/(-2)) + C = 3x^{-2} + C_1
  4. Integrate Second Part: Integrate the second part of the function, 2x2x. Using the same rule as before: (2x)dx=2×(x1)dx=2×(x1+11+1)+C=2×(x22)+C=x2+C2\int(2x)dx = 2 \times \int(x^1)dx = 2 \times \left(\frac{x^{1+1}}{1+1}\right) + C = 2 \times \left(\frac{x^2}{2}\right) + C = x^2 + C_2
  5. Combine Results: Combine the results of the two integrals.\newlineThe combined result of the integrals is:\newline3x2+C1+x2+C23x^{-2} + C_1 + x^2 + C_2\newlineSince C1C_1 and C2C_2 are both constants, we can combine them into a single constant CC.\newlineFinal result: 3x2+x2+C3x^{-2} + x^2 + C

More problems from Evaluate definite integrals using the power rule