Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Calculate the integral and write the answer in simplest form.

int(3x^(2)+6x^(4))dx
Answer:

Calculate the integral and write the answer in simplest form.\newline(3x2+6x4)dx \int\left(3 x^{2}+6 x^{4}\right) d x \newlineAnswer:

Full solution

Q. Calculate the integral and write the answer in simplest form.\newline(3x2+6x4)dx \int\left(3 x^{2}+6 x^{4}\right) d x \newlineAnswer:
  1. Integrate 3x23x^2: We are given the integral of a polynomial function. To solve this, we will integrate each term separately using the power rule for integration, which states that the integral of xnx^n with respect to xx is x(n+1)(n+1)\frac{x^{(n+1)}}{(n+1)} for any real number n1n \neq -1.\newlineLet's integrate the first term 3x23x^2:\newline3x2dx=3×x2dx=3×x(2+1)(2+1)=x3\int 3x^2 dx = 3 \times \int x^2 dx = 3 \times \frac{x^{(2+1)}}{(2+1)} = x^3
  2. Integrate 6x46x^4: Now, let's integrate the second term 6x46x^4:6x4dx=6×x4dx=6×x4+14+1=65x5\int 6x^4 dx = 6 \times \int x^4 dx = 6 \times \frac{x^{4+1}}{4+1} = \frac{6}{5}x^5
  3. Combine integrals: Combine the results of the two integrals to get the final indefinite integral:\newline(3x2+6x4)dx=x3+65x5+C\int(3x^2 + 6x^4) \, dx = x^3 + \frac{6}{5}x^5 + C\newlinewhere CC is the constant of integration.

More problems from Evaluate definite integrals using the power rule