Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

a) 0π2xsinxdx \int_{0}^{\frac{\pi}{2}} x \sin x \, dx

Full solution

Q. a) 0π2xsinxdx \int_{0}^{\frac{\pi}{2}} x \sin x \, dx
  1. Identify Integral: Identify the integral to be solved.\newlineWe need to evaluate the integral of xsinxx \sin x with respect to xx from 00 to π2\frac{\pi}{2}.
  2. Use Integration by Parts: Use integration by parts.\newlineIntegration by parts formula is udv=uvvdu\int u \, dv = uv - \int v \, du.\newlineLet u=xu = x, which means du=dxdu = dx.\newlineLet dv=sinxdxdv = \sin x \, dx, which means v=cosxv = -\cos x.
  3. Apply Integration by Parts: Apply the integration by parts formula. xsinxdx=xcosx(cosx)dx\int x \sin x \, dx = -x \cos x - \int(-\cos x) \, dx
  4. Integrate cosx-\cos x: Integrate cosx-\cos x with respect to xx.(cosx)dx=sinx\int(-\cos x) \, dx = -\sin x
  5. Substitute Integrated Parts: Substitute the integrated parts into the formula.\newlinexsinxdx=xcosx+sinx+C\int x \sin x \, dx = -x \cos x + \sin x + C, where CC is the constant of integration.
  6. Evaluate Definite Integral: Evaluate the definite integral from 00 to π2\frac{\pi}{2}.
    0π2xsinxdx=[xcosx+sinx]\int_{0}^{\frac{\pi}{2}} x \sin x \,dx = [-x \cos x + \sin x] from 00 to π2\frac{\pi}{2}
    = [(π2)cos(π2)+sin(π2)][(0)cos(0)+sin(0)][-(\frac{\pi}{2}) \cos(\frac{\pi}{2}) + \sin(\frac{\pi}{2})] - [-(0) \cos(0) + \sin(0)]
    = [(π2)(0)+1][0+0][-(\frac{\pi}{2})(0) + 1] - [0 + 0]
    = 11

More problems from Evaluate definite integrals using the chain rule