Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

A function h(x)h(x) increases by 11 over every unit interval in xx and h(0)=0h(0) = 0.\newlineWhich could be a function rule for h(x)h(x)?\newlineChoices:\newline(A) h(x)=x1h(x) = x - 1\newline(B) h(x)=xh(x) = x\newline(C) h(x)=xh(x) = -x\newline(D) h(x)=x+1h(x) = -x + 1

Full solution

Q. A function h(x)h(x) increases by 11 over every unit interval in xx and h(0)=0h(0) = 0.\newlineWhich could be a function rule for h(x)h(x)?\newlineChoices:\newline(A) h(x)=x1h(x) = x - 1\newline(B) h(x)=xh(x) = x\newline(C) h(x)=xh(x) = -x\newline(D) h(x)=x+1h(x) = -x + 1
  1. Check h(0)h(0): Check h(0)h(0) for each function to see if it equals 00.\newlineFor (A) h(x)=x1h(x) = x - 1, h(0)=01=1h(0) = 0 - 1 = -1.
  2. Eliminate choices: For (B) h(x)=xh(x) = x, h(0)=0h(0) = 0.
  3. Check unit increase: For (C)(C) h(x)=xh(x) = -x, h(0)=0=0h(0) = -0 = 0.
  4. Eliminate choice: For (D) h(x)=x+1h(x) = -x + 1, h(0)=0+1=1h(0) = -0 + 1 = 1.
  5. Eliminate choice: For (D) h(x)=x+1h(x) = -x + 1, h(0)=0+1=1h(0) = -0 + 1 = 1.Eliminate choices (A) and (D) because h(0)0h(0) \neq 0. Now check if the remaining functions increase by 11 for each unit increase in xx.
  6. Eliminate choice: For (D) h(x)=x+1h(x) = -x + 1, h(0)=0+1=1h(0) = -0 + 1 = 1.Eliminate choices (A) and (D) because h(0)0h(0) \neq 0. Now check if the remaining functions increase by 11 for each unit increase in xx.For (B) h(x)=xh(x) = x, if xx increases by 11, h(x)h(x) increases by 11 since h(0)=0+1=1h(0) = -0 + 1 = 100.
  7. Eliminate choice: For (D) h(x)=x+1h(x) = -x + 1, h(0)=0+1=1h(0) = -0 + 1 = 1. Eliminate choices (A) and (D) because h(0)0h(0) \neq 0. Now check if the remaining functions increase by 11 for each unit increase in xx. For (B) h(x)=xh(x) = x, if xx increases by 11, h(x)h(x) increases by 11 since h(0)=0+1=1h(0) = -0 + 1 = 100. For (C) h(0)=0+1=1h(0) = -0 + 1 = 111, if xx increases by 11, h(x)h(x) decreases by 11 since h(0)=0+1=1h(0) = -0 + 1 = 166.
  8. Eliminate choice: For (D) h(x)=x+1h(x) = -x + 1, h(0)=0+1=1h(0) = -0 + 1 = 1.Eliminate choices (A) and (D) because h(0)0h(0) \neq 0. Now check if the remaining functions increase by 11 for each unit increase in xx.For (B) h(x)=xh(x) = x, if xx increases by 11, h(x)h(x) increases by 11 since h(0)=0+1=1h(0) = -0 + 1 = 100.For (C) h(0)=0+1=1h(0) = -0 + 1 = 111, if xx increases by 11, h(x)h(x) decreases by 11 since h(0)=0+1=1h(0) = -0 + 1 = 166.Eliminate choice (C) because it decreases instead of increases.

More problems from Intermediate Value Theorem