Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Which of these strategies would eliminate a variable in the system of equations?

{[-x+6y=8],[7x-y=-2]:}
Choose 1 answers:
A Add the equations.
B Multiply the bottom equation by 6 , then subtract the bottom equation from the top equation.
c Multiply the top equation by 7 , then add the equations.

Which of these strategies would eliminate a variable in the system of equations?\newline{x+6y=87xy=2 \left\{\begin{array}{l} -x+6 y=8 \\ 7 x-y=-2 \end{array}\right. \newlineChoose 11 answers:\newline(A) Add the equations.\newline(B) Multiply the bottom equation by 66 , then subtract the bottom equation from the top equation.\newline(C) Multiply the top equation by 77 , then add the equations.

Full solution

Q. Which of these strategies would eliminate a variable in the system of equations?\newline{x+6y=87xy=2 \left\{\begin{array}{l} -x+6 y=8 \\ 7 x-y=-2 \end{array}\right. \newlineChoose 11 answers:\newline(A) Add the equations.\newline(B) Multiply the bottom equation by 66 , then subtract the bottom equation from the top equation.\newline(C) Multiply the top equation by 77 , then add the equations.
  1. Analyze the system: Analyze the given system of equations to determine which strategy would eliminate a variable.\newlineThe system of equations is:\newlinex+6y=8-x + 6y = 8\newline7xy=27x - y = -2\newlineWe need to find a strategy that will eliminate either x'x' or y'y' when we combine the two equations.
  2. Evaluate option A: Evaluate option A: Add the equations.\newlineIf we add the equations directly, we get:\newline(x+6y)+(7xy)=8+(2)(-x + 6y) + (7x - y) = 8 + (-2)\newlineThis simplifies to:\newline6x+5y=66x + 5y = 6\newlineThis does not eliminate any variable.
  3. Evaluate option B: Evaluate option B: Multiply the bottom equation by 66, then subtract the bottom equation from the top equation.\newlineFirst, we multiply the bottom equation by 66:\newline6×(7xy)=6×(2)6 \times (7x - y) = 6 \times (-2)\newlineThis gives us:\newline42x6y=1242x - 6y = -12\newlineNow, we subtract this new equation from the top equation:\newline(x+6y)(42x6y)=8(12)(-x + 6y) - (42x - 6y) = 8 - (-12)\newlineThis simplifies to:\newlinex+6y42x+6y=8+12-x + 6y - 42x + 6y = 8 + 12\newlineCombining like terms, we get:\newline43x+12y=20-43x + 12y = 20\newlineThis does not eliminate any variable.
  4. Evaluate option C: Evaluate option C: Multiply the top equation by 77, then add the equations.\newlineFirst, we multiply the top equation by 77:\newline7(x+6y)=787 \cdot (-x + 6y) = 7 \cdot 8\newlineThis gives us:\newline7x+42y=56-7x + 42y = 56\newlineNow, we add this new equation to the bottom equation:\newline(7x+42y)+(7xy)=56+(2)(-7x + 42y) + (7x - y) = 56 + (-2)\newlineThis simplifies to:\newline7x+42y+7xy=54-7x + 42y + 7x - y = 54\newlineCombining like terms, we get:\newline41y=5441y = 54\newlineThis eliminates the variable 'x'.

More problems from Solve a system of equations using elimination