Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

What is the period of

y=-5cos((pi)/(8)x)+3?
Give an exact value.
units

What is the period of\newliney=5cos(π8x)+3? y=-5 \cos \left(\frac{\pi}{8} x\right)+3 ? \newlineGive an exact value.\newlineunits

Full solution

Q. What is the period of\newliney=5cos(π8x)+3? y=-5 \cos \left(\frac{\pi}{8} x\right)+3 ? \newlineGive an exact value.\newlineunits
  1. Identify Standard Form: Identify the standard form of a cosine function and its period.\newlineThe standard form of a cosine function is y=Acos(BxC)+Dy = A\cos(Bx - C) + D, where:\newline- AA is the amplitude,\newline- BB affects the period of the function,\newline- CC is the phase shift, and\newline- DD is the vertical shift.\newlineThe period of the standard cosine function cos(x)\cos(x) is 2π2\pi. For the function y=Acos(BxC)+Dy = A\cos(Bx - C) + D, the period is given by the formula Period=2πB\text{Period} = \frac{2\pi}{|B|}.
  2. Determine Value of B: Determine the value of B in the given function.\newlineIn the given function y=5cos(π8x)+3y = -5\cos\left(\frac{\pi}{8}x\right) + 3, the value of B is π8\frac{\pi}{8}.
  3. Calculate Period: Calculate the period of the given function using the formula.\newlineUsing the formula Period=2πB\text{Period} = \frac{2\pi}{|B|}, we substitute BB with π8\frac{\pi}{8}:\newlinePeriod=2ππ8=2ππ8=2π×8π=16\text{Period} = \frac{2\pi}{|\frac{\pi}{8}|} = \frac{2\pi}{\frac{\pi}{8}} = 2\pi \times \frac{8}{\pi} = 16.

More problems from Solve a system of equations using any method