Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
AI tutor
Welcome to Bytelearn!
Let’s check out your problem:
Solve the
system of equations
.
\newline
7
y
+
10
x
−
8
=
0
2
y
−
5
x
−
18
=
0
x
=
□
y
=
□
\begin{array}{l} 7 y+10 x-8=0 \\ 2 y-5 x-18=0 \\ x=\square \\ y=\square \end{array}
7
y
+
10
x
−
8
=
0
2
y
−
5
x
−
18
=
0
x
=
□
y
=
□
View step-by-step help
Home
Math Problems
Algebra 2
Solve a system of equations using elimination
Full solution
Q.
Solve the system of equations.
\newline
7
y
+
10
x
−
8
=
0
2
y
−
5
x
−
18
=
0
x
=
□
y
=
□
\begin{array}{l} 7 y+10 x-8=0 \\ 2 y-5 x-18=0 \\ x=\square \\ y=\square \end{array}
7
y
+
10
x
−
8
=
0
2
y
−
5
x
−
18
=
0
x
=
□
y
=
□
Write equations:
Write down the system of equations.
\newline
We have the following system of equations:
\newline
7
y
+
10
x
−
8
=
0
7y + 10x - 8 = 0
7
y
+
10
x
−
8
=
0
\newline
2
y
−
5
x
−
18
=
0
2y - 5x - 18 = 0
2
y
−
5
x
−
18
=
0
Solve for y:
Solve one of the equations for one variable.
\newline
Let's solve the first equation for y:
\newline
7
y
=
−
10
x
+
8
7y = -10x + 8
7
y
=
−
10
x
+
8
\newline
y
=
−
10
x
+
8
7
y = \frac{-10x + 8}{7}
y
=
7
−
10
x
+
8
Substitute
y
y
y
into second equation:
Substitute the expression for
y
y
y
into the second equation.
\newline
Substitute
y
=
−
10
x
+
8
7
y = \frac{-10x + 8}{7}
y
=
7
−
10
x
+
8
into
2
y
−
5
x
−
18
=
0
2y - 5x - 18 = 0
2
y
−
5
x
−
18
=
0
:
\newline
2
(
−
10
x
+
8
7
)
−
5
x
−
18
=
0
2\left(\frac{-10x + 8}{7}\right) - 5x - 18 = 0
2
(
7
−
10
x
+
8
)
−
5
x
−
18
=
0
Clear the fraction:
Multiply through by
7
7
7
to clear the
fraction
.
\newline
14
(
−
10
x
+
8
)
−
35
x
−
126
=
0
14(-10x + 8) - 35x - 126 = 0
14
(
−
10
x
+
8
)
−
35
x
−
126
=
0
Combine like terms:
Distribute and combine like terms.
\newline
−
140
x
+
112
−
35
x
−
126
=
0
-140x + 112 - 35x - 126 = 0
−
140
x
+
112
−
35
x
−
126
=
0
\newline
−
175
x
−
14
=
0
-175x - 14 = 0
−
175
x
−
14
=
0
Solve for x:
Solve for x.
\newline
−
175
x
=
14
-175x = 14
−
175
x
=
14
\newline
x
=
14
−
175
x = \frac{14}{-175}
x
=
−
175
14
\newline
x
=
−
2
25
x = -\frac{2}{25}
x
=
−
25
2
Substitute
x
x
x
into
y
y
y
expression:
Substitute
x
x
x
back into the expression for
y
y
y
.
y
=
−
10
(
−
2
25
)
+
8
7
y = \frac{-10\left(\frac{-2}{25}\right) + 8}{7}
y
=
7
−
10
(
25
−
2
)
+
8
y
=
20
25
+
8
7
y = \frac{\frac{20}{25} + 8}{7}
y
=
7
25
20
+
8
Simplify y expression:
Simplify the expression for y.
\newline
y
=
4
5
+
8
÷
7
y = \frac{4}{5} + 8 \div 7
y
=
5
4
+
8
÷
7
\newline
y
=
4
5
+
40
5
÷
7
y = \frac{4}{5} + \frac{40}{5} \div 7
y
=
5
4
+
5
40
÷
7
\newline
y
=
44
5
÷
7
y = \frac{44}{5} \div 7
y
=
5
44
÷
7
\newline
y
=
44
35
y = \frac{44}{35}
y
=
35
44
Write the solution:
Write the solution as an ordered pair.
\newline
The solution is
(
x
,
y
)
=
(
−
2
25
,
44
35
)
(x, y) = (-\frac{2}{25}, \frac{44}{35})
(
x
,
y
)
=
(
−
25
2
,
35
44
)
.
More problems from Solve a system of equations using elimination
Question
Solve using substitution.
5
x
−
2
y
=
−
7
5x - 2y = -7
5
x
−
2
y
=
−
7
x
=
−
5
x = -5
x
=
−
5
(_,_)
Get tutor help
Posted 9 months ago
Question
Is
(
1
,
1
)
(1,1)
(
1
,
1
)
a solution to this system of equations?
\newline
4
x
+
10
y
=
14
4x + 10y = 14
4
x
+
10
y
=
14
\newline
x
+
6
y
=
7
x + 6y = 7
x
+
6
y
=
7
\newline
Choices:
\newline
(A) yes
\newline
(B) no
Get tutor help
Posted 9 months ago
Question
Which describes the system of equations below?
\newline
y
=
–
3
x
+
9
y = –3x + 9
y
=
–3
x
+
9
\newline
y
=
–
3
x
+
9
y = –3x + 9
y
=
–3
x
+
9
\newline
Choices:
\newline
(A) consistent and independent
\text{(A) consistent and independent}
(A) consistent and independent
\newline
(B) consistent and dependent
\text{(B) consistent and dependent}
(B) consistent and dependent
\newline
(C) inconsistent
\text{(C) inconsistent}
(C) inconsistent
Get tutor help
Posted 9 months ago
Question
Solve using elimination.
\newline
7
x
−
8
y
=
−
17
7x - 8y = -17
7
x
−
8
y
=
−
17
\newline
−
7
x
+
3
y
=
2
-7x + 3y = 2
−
7
x
+
3
y
=
2
\newline
(
_
_
_
_
,
_
_
_
_
)
(\_\_\_\_, \_\_\_\_)
(
____
,
____
)
Get tutor help
Posted 9 months ago
Question
Solve.
\newline
x
=
−
2
x = -2
x
=
−
2
\newline
−
2
x
+
2
y
=
−
8
-2x + 2y = -8
−
2
x
+
2
y
=
−
8
\newline
(
_
_
_
_
,
_
_
_
_
)
(\_\_\_\_, \_\_\_\_)
(
____
,
____
)
Get tutor help
Posted 1 year ago
Question
Write a system of equations to describe the situation below, solve using any method, and fill in the blanks.
\newline
At a community barbecue, Mrs. Wilkerson and Mr. Hogan are buying dinner for their families. Mrs. Wilkerson purchases
3
3
3
hot dog meals and
3
3
3
hamburger meals, paying a total of
$
36
\$36
$36
. Mr. Hogan buys
1
1
1
hot dog meal and
3
3
3
hamburger meals, spending
$
26
\$26
$26
in all. How much do the meals cost?
\newline
Hot dog meals cost
$
\$
$
_______ each, and hamburger meals cost
$
\$
$
________ each.
Get tutor help
Posted 1 year ago
Question
Solve the system of equations by substitution.
\newline
−
3
x
−
y
−
3
z
=
−
11
-3x - y - 3z = -11
−
3
x
−
y
−
3
z
=
−
11
\newline
z
=
5
z = 5
z
=
5
\newline
x
−
y
+
3
z
=
19
x - y + 3z = 19
x
−
y
+
3
z
=
19
\newline
(____.____,____)
Get tutor help
Posted 9 months ago
Question
Solve the system of equations by elimination.
\newline
x
−
3
y
−
2
z
=
10
x - 3y - 2z = 10
x
−
3
y
−
2
z
=
10
\newline
3
x
+
2
y
+
2
z
=
14
3x + 2y + 2z = 14
3
x
+
2
y
+
2
z
=
14
\newline
2
x
−
3
y
−
2
z
=
16
2x - 3y - 2z = 16
2
x
−
3
y
−
2
z
=
16
\newline
(
_
,
_
,
_
)
(\_,\_,\_)
(
_
,
_
,
_
)
Get tutor help
Posted 9 months ago
Question
Solve the system of equations.
\newline
y
=
x
2
+
36
x
+
3
y = x^2 + 36x + 3
y
=
x
2
+
36
x
+
3
\newline
y
=
22
x
−
37
y = 22x - 37
y
=
22
x
−
37
\newline
Write the coordinates in exact form. Simplify all fractions and radicals.
\newline
(
_
,
_
)
(\_,\_)
(
_
,
_
)
\newline
(
_
,
_
)
(\_,\_)
(
_
,
_
)
Get tutor help
Posted 9 months ago
Question
Solve the system of equations.
\newline
y
=
−
x
−
24
y = -x - 24
y
=
−
x
−
24
\newline
x
2
+
y
2
=
488
x^2 + y^2 = 488
x
2
+
y
2
=
488
\newline
Write the coordinates in exact form. Simplify all fractions and radicals.
\newline
(
_
,
_
)
(\_,\_)
(
_
,
_
)
\newline
(
_
,
_
)
(\_,\_)
(
_
,
_
)
Get tutor help
Posted 9 months ago
Related topics
Algebra - Order of Operations
Algebra - Distributive Property
`X` and `Y` Axes
Geometry - Scalene Triangle
Common Multiple
Geometry - Quadrant