Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve the system of equations.

{:[7y+10 x-8=0],[2y-5x-18=0],[x=◻],[y=◻]:}

Solve the system of equations.\newline7y+10x8=02y5x18=0x=y= \begin{array}{l} 7 y+10 x-8=0 \\ 2 y-5 x-18=0 \\ x=\square \\ y=\square \end{array}

Full solution

Q. Solve the system of equations.\newline7y+10x8=02y5x18=0x=y= \begin{array}{l} 7 y+10 x-8=0 \\ 2 y-5 x-18=0 \\ x=\square \\ y=\square \end{array}
  1. Write equations: Write down the system of equations.\newlineWe have the following system of equations:\newline7y+10x8=07y + 10x - 8 = 0\newline2y5x18=02y - 5x - 18 = 0
  2. Solve for y: Solve one of the equations for one variable.\newlineLet's solve the first equation for y:\newline7y=10x+87y = -10x + 8\newliney=10x+87y = \frac{-10x + 8}{7}
  3. Substitute yy into second equation: Substitute the expression for yy into the second equation.\newlineSubstitute y=10x+87y = \frac{-10x + 8}{7} into 2y5x18=02y - 5x - 18 = 0:\newline2(10x+87)5x18=02\left(\frac{-10x + 8}{7}\right) - 5x - 18 = 0
  4. Clear the fraction: Multiply through by 77 to clear the fraction.\newline14(10x+8)35x126=014(-10x + 8) - 35x - 126 = 0
  5. Combine like terms: Distribute and combine like terms.\newline140x+11235x126=0-140x + 112 - 35x - 126 = 0\newline175x14=0-175x - 14 = 0
  6. Solve for x: Solve for x.\newline175x=14-175x = 14\newlinex=14175x = \frac{14}{-175}\newlinex=225x = -\frac{2}{25}
  7. Substitute xx into yy expression: Substitute xx back into the expression for yy.
    y=10(225)+87y = \frac{-10\left(\frac{-2}{25}\right) + 8}{7}
    y=2025+87y = \frac{\frac{20}{25} + 8}{7}
  8. Simplify y expression: Simplify the expression for y.\newliney=45+8÷7y = \frac{4}{5} + 8 \div 7\newliney=45+405÷7y = \frac{4}{5} + \frac{40}{5} \div 7\newliney=445÷7y = \frac{44}{5} \div 7\newliney=4435y = \frac{44}{35}
  9. Write the solution: Write the solution as an ordered pair.\newlineThe solution is (x,y)=(225,4435)(x, y) = (-\frac{2}{25}, \frac{44}{35}).

More problems from Solve a system of equations using elimination